Math 104 Homework 8 David Dumas Due Thursday, April 13, 2006

- (1) **Distance formula for hypercycles.** In class we showed that the *d*-equidistant locus of the line in H represented by the positive y axis is a pair of Euclidean rays making angle θ with the y axis. Show that $\tan(\theta) = \sinh(d)$. (Hint: See problem (3) from homework 7.)
- (2) Collinearity.
 - (a) Let c be one of the following objects in the hyperbolic plane:
 - A horocycle
 - A hypercycle
 - A circle

Show that no three points on c are collinear. (Note: Three points are collinear if they lie on a hyperbolic geodesic. This has nothing to do with the Euclidean lines in a model of \mathbb{H}^2 .)

- (b) What is the relationship between (a) and Theorem 6.3 in Greenberg?
- (3) Minkowski space. Let $v, w \in \mathbb{R}^{2,1}$. Decide whether each of the following statements is true or false. If it is true, prove it. If it is false, give a counterexample.
 - (a) If v and w are null, then $\langle v, w \rangle = 0$.
 - (b) If v and w are timelike, then $\langle v, w \rangle < 0$.
 - (c) If v and w are spacelike, then $\langle v, w \rangle > 0$.
 - (d) If v is null, then $v \in v^{\perp}$.
 - (e) If $v \in v^{\perp}$, then v is null.
 - (f) If v and w are timelike, then any linear combination of v and w is timelike.
- (g) If v and w are spacelike, then $\frac{v+w}{2}$ is spacelike. (4) Minkowski model distance. Let $v_1 = (-1, 0, 2), v_2 = (0, -1, 2), w_1 = (2, 0, 1),$ $w_2 = (0, 2, 1)$. Note that v_1 and v_2 are timelike, so they represent points in \mathbb{H}^2 , while w_1 and w_2 are spacelike, so they represent lines in \mathbb{H}^2 . (Note: Since v_i are not unit vectors, they must be rescaled to lie on Σ .) Use the Minkowski inner product to compute the following hyperbolic quantities:
 - (a) The distance between v_1 and v_2
 - (b) Cancelled. (Was: The perpendicular distance from v_1 to the line w_1)
 - (c) Cancelled. (Was: The perpendicular distance from v_1 to the line w_2)
 - (d) The angle between the lines w_1 and w_2
 - (e) Finally, draw a picture of the points v_i and lines w_i in the Klein model.
- (5) Klein distance and Minkowski distance.
 - (a) Find the unit vector in $\mathbb{R}^{2,1}$ that corresponds to the point $(r,0) \in \Delta_K$.
 - (b) Suppose that x > 1. Show that the unique positive solution of the equation $\cosh(d) = x$ is

$$d = \log(x + \sqrt{x^2 - 1}).$$

(c) Use the Minkowski inner product to compute the distance between the points in Σ corresponding to (0,0) and (r,0) in Δ_K . Simplify the resulting expression to show that it agrees with the Klein model distance $\frac{1}{2}\log\frac{1+r}{1-r}$.