
Math 52 Final Exam Topic List
David Dumas

What will be covered

The final exam is cumulative, covering all of the material from Math 52, which is roughly
the the first 6 chapters of Strang’s book (except section 6.7) and the first two sections
of chapter 7.

Material covered since the second exam will be emphasized on the final, but older ma-
terial will still account for at least half of the questions.

What to expect

The problems on the exam will closely resemble the problems from the homework. The
distribution of different types of questions (e.g. calculations vs. theoretical exercises)
will also mirror what you have seen on the homework assignments.

A typical question will ask you to apply the methods we have learned to a particular
example (perhaps involving some unknown quantities) and draw conclusions about what
the results mean. Sometimes a question may involve multiple concepts from different
parts of the course, e.g. “Suppose 0 is not an eigenvalue of the square matrix A; why
does Ax = b always have a solution?”

How to prepare

In preparing for the exam, start by reviewing the reading and especially the “worked
problems” at the end of each section. Strang includes a list of “conceptual questions”
at the end of the book (starting on p. 546); ask yourself these questions after review-
ing the reading, and make sure you can confidently answer them. For practice, try a
few problems from the textbook, especially those similar to the problems assigned for
homework. Solutions to many exercises can be found starting on p. 502.

Since we have discussed a number of connections between the properties of a matrix A
and its eigenvalues and eigenvectors, you may find it helpful to refer to the summary of
such connections on p. 362. Keep in mind that this table includes some topics we have
not discussed, like the singular value decomposition.

Outline of topics covered since Exam 2
(1) Eigenvalues and eigenvectors (§6.1)

(a) Eigenvalues and eigenvectors are only defined for square matrices, because
x and Ax must be vectors of the same size.

(b) We say x is an eigenvector of an n× n matrix A with eigenvalue λ if

Ax = λx
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and x 6= 0.
(c) Thus x is an eigenvector if it and Ax have the same direction, i.e. one is a

multiple of the other.
(d) Both x and λ are “unknowns” in the equation Ax = λx; it is not a linear

system like Ax = b.
(e) Ax = λx is equivalent to x ∈ N(A− λI), so λ is an eigenvector of A when

(A− λI) is singular.
(f) 0 is an eigenvalue of A if and only if A is singular; eigenvectors with eigen-

value 0 are vectors in N(A).
(g) The roots of the characteristic equation det(A−λI) = 0 are the eigenvalues

of A, because these are the values of λ for which (A− λI) is singular.
(h) det(A−λI) is a polynomial of degree n in λ (the characteristic polynomial),

so there are n eigenvalues, counted with multiplicity.
(i) To find linearly independent eigenvectors with eigenvalue λ, compute a basis

for the null space of (A − λI). (Therefore, once you know the eigenvalues,
it is easy to find the associated eigenvectors.)

(j) The sum of the n eigenvalues of A is equal to the trace of A (the sum of its
diagonal entries), i.e.

∑

i

λi =
∑

i

aii.

(k) The product of the n eigenvalues of A is equal to the determinant of A i.e.

det(A) = λ1 λ2 · · · λn

(2) Diagonalizability (§6.2)
(a) We say A is diagonalizable if it has n linearly independent eigenvectors.

Equivalently, there is a basis of Rn consisting of eigenvectors of A.
(b) Some matrices are diagonalizable (like ( 2 1

1 2 )), while others are not (like
( 2 1

0 2 )).
(c) A “random” matrix is likely to be diagonalizable, and any matrix can be

made diagonalizable by changing its entries by an arbitrarily small amount.
(d) If A has n distinct eigenvalues, then A is diagonalizable; this follows from

two facts:
(i) Every eigenvalue has at least one associated eigenvector
(ii) Eigenvectors with different eigenvalues are linearly independent

(e) If λ is an eigenvalue of A, its algebraic multiplicity is the number of times
it appears as a root of det(A− λI). For example, if det(A− λI) = λ2(λ +
1)(λ− 2)3 then the algebraic multiplicities are:

λ AM
0 2
-1 1
2 3
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(f) If λ is an eigenvalue of A, its geometric multiplicity is the maximal number
of linearly independent eigenvectors with eigenvalue λ, i.e.

GM = dimN(A− λI).

For example, here are two 2× 2 matrices whose only eigenvalue is 2 (hence
AM = 2), but where the geometric multiplicities differ.

A GM of λ = 2
( 2 0

0 2 ) 2
( 2 1

0 2 ) 1
(g) A is diagonalizable exactly when AM = GM for each eigenvalue. Since

GM ≤ AM , non-diagonalizable matrices are exactly those with too few
eigenvectors.

(3) Diagonalization (§6.2)
(a) Suppose A is a diagonalizable matrix with eigenvalues λ1, . . . , λn and asso-

ciated eigenvectors x1, . . . ,xn, i.e.

Axi = λixi.

(b) Let

Λ =




λ1

λ2

. . .
λn


 .

This is the diagonal eigenvalue matrix.
(c) Let

S =


x1 x2 · · · xn




This is the eigenvector matrix, which is invertible because its columns form
a basis of Rn.

(d) Since Axi = λixi, we have

A = SΛS−1.

(e) Conversely, if A = SΛS−1, then the columns of S are eigenvectors and the
diagonal entries of Λ are the eigenvalues.

(f) Since Ak = SΛkS−1, the matrix Ak has the same eigenvectors as A, with
eigenvalues λk

1, . . . , λ
k
n.

(g) If 0 is not an eigenvalue, then A is invertible and A−1 = SΛ−1S−1, so A−1

has the same eigenvectors as A, with eigenvalues 1/λi, . . . , 1/λn.
(h) Ak → 0 as k →∞ if all of the eigenvalues of A satisfy |λi| < 1. (This is true

even if A is not diagonablizable, but for diagonalizable matrices it follows
from A = SΛS−1.)

(4) Application: Difference Equations (§6.2)
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(a) Define a sequence of vectors starting with u0 and applying the rule

uk+1 = Auk.

(b) If xi is an eigenvector of A with eigenvalue λi, then

uk = λk
i xi

is a solution of uk+1 = Auk.
(c) If |λi| < 1, then the corresponding solution decays as k → ∞, while if

|λi| > 1 the solution blows up.
(d) If λi = 1, then any multiple of xi is a steady-state solution, because Axi =

xi.
(e) If A is diagonalizable, then its eigenvectors form a basis of Rn, so any

starting vector u0 is a linear combination of them:

u0 = c1x1 + . . . cnxn

The corresponding solution to uk+1 = Auk is therefore

uk = c1λ
k
1x1 + . . . cnλk

nxn

(f) The matrix form of this solution is

uk = Aku0 = SΛkS−1uk = SΛkc.

(g) This method allows us to find an explicit formula for the Fibonacci numbers
(0, 1, 1 , 2, 3, 5, 8, 13, 21, 33, . . .), which obey the second-order relation

Fk+2 = Fk+1 + Fk.

This can be made into a first-order difference equation by considering the
vector

uk =
(

Fk+1

Fk

)

which satisfies

uk+1 =
(

1 1
1 0

)
uk.

(h) The kth Fibonacci number is approximately

Fk ≈ 1√
5

(
1 +

√
5

2

)k

because 1+
√

5
2 is the only eigenvalue of ( 1 1

1 0 ) larger than 1. (The factor 1√
5

comes from the initial conditions F0 = 0, F1 = 1.)

(5) Application: Differential Equations (§6.3)
(a) Given an n× n matrix A, consider the system of differential equations

du
dt

= Au



5

where

u(t) =




u1(t)
...

un(t)


 .

This system is linear, first-order, and has constant coefficients.
(b) If xi is an eigenvector of A with eigenvalue λi, then

u(t) = eλitxi

is a solution of du
dt = Au. It is a pure exponential solution, where u(t) moves

along the line of multiples of xi.
(c) If Re(λi) < 0, then the corresponding solution decays as t → ∞, while if

Re(λi) > 0 the solution blows up.
(d) If λi = 0, then any multiple of xi is a steady-state solution, because Axi = 0.
(e) If A is diagonalizable, then its eigenvectors form a basis of Rn, so any initial

condition u(0) is a linear combination of them:

u(0) = c1x1 + . . . cnxn

The corresponding solution to du
dt = Au is therefore

u(t) = c1e
λ1tx1 + . . . cneλntxn

(f) The matrix form of this solution is

u(t) = eAtu(0) = SeΛtS−1u(0) = SeΛtc.

(g) The matrix exponential eA is defined by

eA = I + A +
1
2
A2 + · · · =

∞∑

k=1

1
k!

Ak

and this sum converges for all n× n matrices A.
(h) The exponential of a diagonal matrix is

e

0
BB@

λ1
λ2

. . .
λn

1
CCA

=




eλ1

eλ2

. . .
eλn


 .

(i) Higher-order linear equations with constant coefficients can be reduced to
systems of first-order equations; for example, to solve the equation

y′′ + by′ + ky = 0

we consider the vector function

u(t) =
(

y′(t)
y(t)

)

which satisfies
du
dt

=
(−b −k

1 0

)
u.
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(j) For a 2 × 2 matrix A, the solutions of du
dt = Au will be stable (decay as

t →∞) if the trace of A is negative and the determinant of A is positive:

tr(A) < 0 and det(A) > 0

(6) Symmetric Matrices and the Spectral Theorem (§6.4)
(a) Every symmetric matrix A is diagonalizable.
(b) The eigenvalues of a symmetric matrix are real, and its eigenvectors are

orthogonal.
(c) If the eigenvectors are chosen to have unit length, they form an orthonormal

basis of Rn, so the eigenvector matrix Q is orthogonal. Thus diagonaliza-
tion becomes A = QΛQT for a symmetric matrix A, which is the spectral
theorem.

(d) The spectral theorem allows us to write A as a combination of projections,

A = λ1P1 + · · ·+ λnPn

where Pi is the projection onto the span of the eigenvector qi.
(e) The pivots and the eigenvalues of a symmetric matrix are different, but are

both real. Furthermore, the number of positive (resp. negative) pivots is
equal to the number of positive (resp. negative) eigenvalues. The number
of zero eigenvalues is the dimension of the null space (which one might be
tempted to call “the number of zero pivots”).

(7) Positive Definite Matrices (§6.5)
(a) A matrix is positive definite if it is symmetric and its eigenvalues are positive,

i.e. λi > 0.
(b) A symmetric matrix is positive definite if and only if its pivots are positive.

This is the pivot test, which works because the pivots and eigenvalues of a
symmetric matrix have the same signs.

(c) A symmetric matrix A is positive definite if and only if its upper-left deter-
minants d1, . . . , dn are positive, where

d1 = det(a11) = a11

d2 = det
(

a11 a12

a21 a22

)

...

dn−1 = det




a11 · · · a1,(n−1)
...

...
a(n−1),1 · · · a(n−1),(n−1)




dn = det(A)

This is the determinant test, which works because the pivots are ratios of
these determinants.

(d) A symmetric matrix A is positive definite if and only if xT Ax > 0 for all
nonzero vectors x. This is the quadratic form test.
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(e) The quantity xT Ax is a quadratic form, meaning that it is a quadratic
expression in the components of x; specifically,

xT Ax =
∑

i,j

aijxixj where x =




x1
...

xn


 .

(f) The quadratic form test works because xT Ax can be written as a sum of
squares where the coefficients are the pivots; this is clearly positive if all of
the pivots are positive, and can be zero or negative otherwise.

(g) For a 2× 2 symmetric matrix A, we have the LDLT decomposition
(

a b
b c

)
=

(
1 0
b
a 1

)(
a 0
0 ac−b2

a

)(
1 b

a
0 1

)

so the pivots are a and ac−b2

a . Similarly, the quadratic form xT Ax is a sum
of squares:

xT Ax = ax2
1 + 2bx1x2 + cx2

2 = a

(
x1 +

b

a
x2

)2

+
(

ac−b2

a

)
(x2)2

(h) If A is positive definite, then the graph of xT Ax is a paraboloid. Its mini-
mum is at x = 0.

(i) If A has both positive and negative eigenvalues, then the graph of xT Ax is
saddle-shaped.

(j) If A is positive definite, the equation xT Ax = 1 defines an ellipsoid in Rn.
The principal axes of the ellipsoid are the lines containing the eigenvectors
q1, . . . ,qn of A, and the half-axis lengths are 1/

√
λi. This comes from

A = QΛQT .
(k) Thus one can draw the ellipse defined by ax2 + 2bxy + cy2 by finding the

eigenvalues and eigenvectors of A =
(

a b
b c

)
.

(l) Positive definite matrices generalize the second-derivative test from calculus:
A critical point of a real-valued function f(x1, . . . , xn) is a minimum if the
Hessian matrix

Hij =
∂2f

∂xi∂xj

is positive definite. Because partial derivatives commute, the Hessian is
always symmetric.

(8) Similar Matrices and Jordan’s Theorem (§6.6)
(a) Two n×n matrices A and B are similar if B = M−1AM for some invertible

matrix M .
(b) Similarity is an equivalence relation, meaning it is

(i) Symmetric: A similar to B iff B similar to A
(ii) Transitive: A similar to B and B similar to C implies A similar to C

(c) A is diagonalizable if and only if it is similar to a diagonal matrix Λ.
(d) Similar matrices have the same:
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(i) eigenvalues,
(ii) algebraic and geometric multiplicities,
(iii) trace, and
(iv) determinant.

(e) The eigenvectors of A and of B = M−1AM are different, but related; if x
is an eigenvector of A with eigenvalue λ, then M−1x is an eigenvalue of B
with eigenvalue λ.

(f) If A has distinct eigenvalues λ1, . . . , λn, then its similarity class (i.e. the
set of all matrices similar to A) consists of all matrices with eigenvalues
λ1, . . . , λn.

(g) If A has a repeated eigenvalue, then another matrix with the same eigen-
values may or may not be similar to A. For example,

A =
(

2 1
0 2

)
and B =

(
2 0
0 2

)

have only one eigenvalue (λ = 2) but are not similar. In fact, B is not
similar to any matrix except itself.

(h) Even if A and B have the same eigenvalues and the same number of eigen-
vectors, they may not be similar. For example

A =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 and B =




0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0




have zero as their only eigenvalue, each has two independent eigenvectors,
but A2 = 0 while B2 6= 0 so they are not similar.

(i) To classify the different similarity classes of matrices, we find a good rep-
resentative of each class, generalizing the diagonal matrix Λ similar to any
diagonalizable matrix.

(j) The k × k Jordan block Jk(λ) has λ as its only eigenvalue, and has one
eigenvector:

Jk(λ) =




λ 1
. . . . . .

. . . 1
λ




(k) Jordan’s Theorem says that every matrix A is similar to a block-diagonal
matrix J of Jordan blocks. Furthermore J is unique up to re-ordering the
blocks, and is called the Jordan form of A. The numbers λi in on the
diagonals of the blocks are the eigenvalues of A, while the number of blocks
is the number of eigenvectors.

(l) A is diagonalizable if and only if its Jordan form has n blocks, each of which
must then have size 1× 1.

(9) Linear Transformations (§7.1-7.2)
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(a) A map T : V → W (where V and W are vector spaces) is a linear transfor-
mation if both of these conditions hold:

(i) T (cv) = cT (v) for all c ∈ R and v ∈ V
(ii) T (v1 + v2) = T (v1) + T (v2) for all v1,v2 ∈ V

(b) A linear transformation is also called a linear map, or linear mapping, or we
may simply say that T is linear.

(c) A linear map T satisfies T (0) = 0
(d) Examples of linear maps include:

(i) T : Rn → Rm defined by T (x) = Ax where A is an m× n matrix
(ii) The identity map Id : V → V , defined by Id(v) = v for all v
(iii) The zero map Z : V → W , defined by Z(v) = 0 for all v
(iv) A rotation R : R2 → R2 of the plane about the origin
(v) Projection P : R2 → R2 of the plane onto a line through the origin

(e) The following maps are not linear:
(i) The determinant map, det : Mn×n → R
(ii) The length map L : Rn → R, where L(v) = ‖v‖
(iii) A shift map T : V → V , where T (v) = v + v0 and v0 6= 0

(f) If v1, . . . ,vn is a basis of V , then any vector v ∈ V can be expressed as

v = c1v1 + . . . cnvn

for unique real numbers c1, . . . , cn. These numbers are the coordinates of v
with respect to the basis v1, . . . ,vn.

(g) If v1, . . . ,vn is a basis of V , then any linear map T : V → W is uniquely
determined by the vectors T (v1), . . . , T (vn) ∈ W

(h) Choosing an input basis v1, . . . ,vn of V and an output basis w1, . . . ,wm

of W allows us to associate a matrix A to a linear transformation T ; the
entries of A are the coordinates of T (vi):

T (v1) = a11w1 + a21w2 + · · ·+ am1wm

T (v2) = a12w1 + a22w2 + · · ·+ am2wm

...

T (vn) = a1nw1 + a2nw2 + · · ·+ amnwm

Thus A is an m×n matrix whose jth column gives the coordinates of T (vj)
with respect to w1, . . . ,wm.

A =




a11 · · · a1n
...

...
am1 · · · amn




(i) If T : V → V is a linear transformation from a vector space to itself, and
v1, . . . ,vn is a basis of eigenvectors, then the matrix associated to T (using
v1, . . . ,vn as both the input and output basis vectors) is diagonal.


