
Math 52 Exam 2 Topic List
David Dumas

What will be covered

The second exam will cover the material from the reading and lectures before Monday,
November 7. This corresponds approximately to chapters 1-5 from Strang. Material
covered since the first exam (section 3.4 and later) is the primary focus of exam 2,
but some dependence on foundational material from the earlier chapters is inevitable.

What to expect

The problems on the exam will closely resemble the problems from the homework.
The distribution of different types of questions (e.g. calculations vs. theoretical
exercises) will also mirror what you have seen on the homework assignments.

A typical question will ask you to apply the methods we have learned to a particular
example (perhaps involving some unknown quantities) and draw conclusions about
what the results mean.

How to prepare

In preparing for the exam, start by reviewing the reading and especially the “worked
problems” at the end of each section. Strang includes a list of “conceptual questions”
at the end of the book (starting on p. 546); ask yourself these questions after reviewing
the reading, and make sure you can confidently answer them. For practice, try a few
problems from the textbook, especially those similar to the problems assigned for
homework. Solutions to many exercises can be found starting on p. 502.

Outline of topics
(1) The complete solution to Ax = b (§3.4)

(a) The rank of an m×n matrix is the number of pivots. The rank r satisfies
r ≤ m and r ≤ n.

(b) The RREF R has m− r zero rows.
(c) To decide whether or not Ax = b has any solutions, reduce the aug-

mented matrix [A b] to [R c]. There is a solution if and only if the last
m− r entries of c are zero (so the last m− r equations become 0 = 0).

(d) To find a particular solution xp, set all n − r free variables to zero and
solve Rx = c by back-substitution.

(e) The general solution is then x = xp + xn where xn ∈ N(A), i.e. xn is a
linear combination of the (n− r) special solutions.

(f) Special case: If r = n, then A has full column rank. There is exactly one
solution if b ∈ C(A) and no solution otherwise. (In particular, if there
is any solution at all, it is unique.)
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(g) Special case: If r = m then A has full row rank. There is exactly one
solution if m = n, and infinitely many solutions if m < n. (In particular,
there is at least one solution for any b.)

(h) Special case: If r = m = n then A is a square invertible matrix. There is
exactly one solution for every b. In fact, the solution is x = A−1b.

(2) Linear Independence, Span, Basis, and Dimension (§3.5)
(a) Vectors x1, . . . ,xn are linearly independent if

c1x1 + . . . + cnxn 6= 0

except when c1 = c2 = · · · = cn = 0.
(b) The columns of a matrix A are linearly independent exactly when x = 0

is the only solution to Ax = 0, i.e. N(A) = 0.
(c) The span of x1, . . . ,xn is the vector space consisting of all linear combi-

nations of these vectors.
(d) We say that x1, . . . ,xn span V if V is equal to the span of x1, . . . ,xn.
(e) A basis of V is a set of vectors that span V and are linearly independent.
(f) Every basis of a vector space has the same number of elements. This

number is the dimension of V , written dimV .
(g) If dimV = d, then any d linearly independent vectors form a basis of V .
(h) If dimV = d, then (d − 1) or fewer vectors cannot span V , and (d + 1)

or more vectors cannot be linearly independent.
(i) The columns of an n× n matrix A are a basis for Rn if and only if A is

invertible.

(3) Bases and Dimensions of the Four Subspaces (§§3.5-3.6)
Let A be an m× n matrix of rank r.
(a) The row space C(AT ) and the null space N(A) are subspaces of Rn.
(b) The column space C(A) and the left null space N(AT ) are subspaces of

Rm.
(c) To find bases for the four subspaces, start by reducing [A I] to [R E],

where R is the RREF and EA = R.
(d) The row spaces of A and R are the same, C(AT ) = C(RT ); a basis is

given by the r nonzero rows of R, so dimC(AT ) = r.
(e) The null spaces of A and R are the same, N(A) = N(R); a basis is given

by the (n− r) special solutions so dimN(A) = (n− r).
(f) The r pivot columns of A give a basis for the column space C(A), so

dimC(A) = r. (The column spaces of A and R are different, but they
have the same dimension.)

(g) The last m − r rows of E give a basis for the left null space N(AT ), so
dimN(AT ) = (m − r). (The left null spaces of A and R are different,
but they have the same dimension.)

(4) Orthogonality of Vectors and Subspaces (§4.1)
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(a) The product xTy is a real number, sometimes called the dot product of
x and y.

(b) Vectors x and y are orthogonal if xTy = 0. In R2 and R3, this means
the vectors are perpendicular in the usual sense.

(c) Alternately, x and y are orthogonal if and only if ‖x‖2+‖y‖2 = ‖x+y‖2,
where ‖x‖ =

√
xTx.

(d) If x is orthogonal to each of the vectors y1, . . . ,ym, then x is orthogonal
to every vector in the span of y1, . . . ,ym.

(e) Subspaces V and W of Rn are orthogonal if every vector in V is or-
thogonal to every vector in W . Orthogonal subspaces have no vectors in
common except 0.

(f) The orthogonal complement V ⊥ of a subspace V of Rn is the set of all
vectors orthogonal to V . It is a subspace.

(g) We say V and W are orthogonal complements if V ⊥ = W (equivalently,
W⊥ = V ). If V and W are subspaces of Rn and are orthogonal comple-
ments, then their dimensions add up to n.

(5) Orthogonality of the Four Subspaces (§4.1)
(a) The null space N(A) and row space C(AT ) are orthogonal complements;

this comes from the equation Ax = 0 satisfied by a vector x ∈ N(A).
(b) The left null space N(AT ) and the column space C(A) are also orthogonal

complements. (This can be derived from the fact about the null space
and row space, applied to AT .)

(c) To find a basis for a subspace V of Rd or its orthogonal complement V ⊥,
it is best to find a matrix A that has V as one of its four subspaces. For
example:

• To find a basis for a subspace V , you can try to find a matrix A
with V as its column space, and then take the pivot columns of
A. You can also find a basis for the left null space of A, which is
C(A)⊥ = V ⊥.

• Alternately, you can find a matrix B with V as its null space, then
the special solutions of B give a basis for V . You can also find a
basis for the row space of B, which is N(A)⊥ = V ⊥.

(6) Projections (§4.1)
(a) The projection of a vector b onto the line spanned by a is p = aaT b

aT a
=

a aT b
‖a‖2 .

(b) The projection matrix P = 1
‖a‖2 aa

T multiplies b to produce p. The
matrix P has rank one.

(c) To project b onto the column space of a matrix A (which should have
independent columns), we need to find p = Ax̂ ∈ C(A) so that e = b−p
is orthogonal to C(A). This leads to the equation

AT Ax̂ = AT b.
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(d) If A has independent columns, AT A is invertible.
(e) The matrix P that projects onto C(A) is given by the formula

P = A(AT A)−1AT ,

so the projection of b onto C(A) is Pb.
(f) Extreme cases: If P is the projection matrix onto V , then Pb = b if

b ∈ V and Pb = 0 if b ∈ V ⊥.
(g) Projection matrices are symmetric (P = P T ) and satisfy P 2 = P (be-

cause projecting twice is the same as projecting once).
(h) If P is the projection onto V , then I − P is the projection onto V ⊥.
(i) If V is a subspace of Rn, then every vector b ∈ Rn can be expressed as a

sum b = bV +bV ⊥ where bV ∈ V and bV ⊥ ∈ V ⊥. To find these vectors,
let P be the projection matrix for V ; then bV = Pb and bV ⊥ = (I−P )b.

(7) Least Squares Approximation, Fitting Problems (§4.3)
(a) The best way to understand this application of orthogonality and pro-

jections is to work through an example, such as the one Strang describes
on pp. 206 - 209.

(b) Fitting a line (or other model curve) with n parameters (e.g. slope D
and intercept C) to a set of m data points (b1, . . . , bm) gives m equations
in n variables, i.e. Ax = b where A is m× n.

(c) Typically, m is much larger than n, so the system has no solution for
most b.

(d) The normal equations AT Ax̂ = ATb replace the original system with n
equations in n variables. If A has independent columns, then the normal
equations have a unique solution.

(e) The solution x̂ to the normal equations is the best approximate solution
to Ax = b, i.e. it makes E = ‖Ax − b‖2 as small as possible. The
number E is the sum of the squares of individual errors, so this kind of
approximate solution is called “least squares”.

(8) Orthonormal Sets and Orthogonal Matrices (§4.4)
(a) Vectors q1, . . . ,qn are orthonormal if they are mutually orthogonal and

each has unit length. Equivalently qT
i qj = 0 when i and j are different,

and qT
i qi = 1.

(b) Orthonormal vectors are linearly independent.
(c) Vectors q1, . . . ,qn ∈ Rm are orthonormal if and only if QT Q = I, where

Q is the m× n matrix with columns q1, . . . ,qn.
(d) Notation: Q always represents a matrix with orthonormal columns.
(e) If Q is square, it is called an orthogonal matrix. In this case QT = Q−1.
(f) Then the vectors x and Qx have the same length (‖x‖ = ‖Qx‖).
(g) The projection onto C(Q) has a particularly simple form: P = QQT . (If

Q is square, then P = I because the columns span Rn.)

(9) The Gram-Schmidt Algorithm (§4.4)
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(a) The Gram-Schmidt algorithm starts with independent vectors a1, . . . ,an

and produces orthonormal vectors q1, . . . ,qn that span the same space.
(b) Gram-Schmidt is inductive; we explain how to do it for one vector, and

then how to do it for n vectors if we already know how to do it for n− 1
vectors.

(c) For one vector a1, Gram-Schmidt gives q1 = a1
‖a1‖ .

(d) To apply Gram-Schmidt to n vectors a1, . . . ,an, first apply it to the
(n−1) vectors a1, . . . ,an−1 to obtain q1, . . . ,qn−1. Let Vn−1 be the span
of a1, . . . ,an−1, which is the same as the span of q1, . . . ,qn−1. Then qn

is given by the formula:

An = an − (projection of an onto Vn−1)

= an − (qT
1 an)q1 − (qT

2 an)q2 − · · · − (qT
n−1an)qn−1

qn =
An

‖An‖
(e) Applying Gram-Schmidt to the columns of an m×n matrix A (which we

assume are independent) produces an m×n matrix Q with orthonormal
columns.

(f) The corresponding matrix factorization is A = QR where R = QT A is
an n× n matrix. The entries of R are

Rij = qT
i aj .

(g) The matrix R is upper triangular because later qs are orthogonal to
earlier as.

(10) Properties of the Determinant (§5.1)
(a) det(A) = |A| = the determinant of A (an n× n matrix)
(b) Three essential properties uniquely define the determinant:

(i) |I| = 1
(ii) The determinant changes sign when two rows are exchanged.
(iii) The determinant is a linear function of any single row. (Which

involves a scalar multiplication condition and a row addition con-
dition.)

(c) Some additional properties of the determinant follow from the three
above:

• If A has two rows that are equal, then |A| = 0.
• Subtracting a multiple of one row from another leaves |A| un-

changed.
• If A has a row of zeros, then |A| = 0.
• If A is triangular, then |A| = a11a22 · · · ann (the product of the

diagonal entries).
• |A| = 0 if and only if A is singular.
• |AB| = |A| |B| (this is amazing!)
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• |AT | = |A| (so we can substitute “column” for “row” in any other
property)

(d) A permutation matrix P has determinant ±1. If |P | = 1 then P is even,
otherwise P is odd.

(e) It follows from these properties that |A| is ± the product of the pivots
if A is invertible (i.e. has n pivots). The sign is determines by the row
exchanges: it is + if the permutation of the rows is even, and − if the
permutation of the rows is odd.

(11) Formulas for the Determinant (§5.2)
(a) The “big formula” for the determinant expresses it as a sum of n! terms,

one for each permutation of (1, . . . , n):

|A| =
∑

P=(α,β,...,ω) permutation of (1,...,n)

|P | a1αa2β · · · anω

(b) In the big formula, we have one term for each way to select a single entry
of A from each row and each column. The term includes a + or − sign
depending on whether the corresponding permutation of the columns is
even or odd, respectively.

(c) The minor matrix Mij has size (n − 1) × (n − 1), and is obtained from
A by removing row i and column j.

(d) The cofactor Cij the determinant of Mij , up to sign:

Cij = (−1)i+j |Mij |
(e) The signs of the cofactors follow a “checkerboard” pattern:




+ − + − +
− + − + −
+ − + − +
− + − + −
+ − + − +




(f) Choose a row i of A; then we get the cofactor formula for |A| using that
row:

|A| = ai1Ci1 + ai2 + · · ·+ ainCin

This is essentially the “big formula”, but we have separated the terms
according to which entry of row i is present.

(g) A similar cofactor formula works for a column.
(h) The cofactor formula expresses an n × n determinant as a sum of (n −

1)× (n− 1) determinants. (It is “inductive”.)

(12) Applications of the Determinant (§5.3)
(a) Cofactors give us a formula for entries of A−1:

(A−1)ij =
1
|A|Cji.
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In other words,

A−1 =
1
|A|C

T .

(b) The solution to Ax = b is x = A−1b, when A is invertible.
(c) Using the formula for A−1, we can write the solution to Ax = b as

xj =
|Bj |
|A|

where Bj is the matrix obtained by replacing column j of A with b. This
is Cramer’s rule.

(d) Cramer’s rule is computationally inefficient.
(e) The determinant of A is the volume of a box (parallelepiped) in Rn

formed from the rows of A.
(f) For n = 2 the volume interpretation means that the area of a parallelo-

gram with vertices (0, 0), (x1, y1), (x2, y2), and (x1 + x2, y1 + y2) is the
determinant:

area =
∣∣∣∣
x1 y1

x2 y2

∣∣∣∣
(g) This leads to a nice formula for the area of a triangle in the plane with

vertices (x1, y1), (x2, y2), (x3, y3):

area =
1
2

∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣

Note:

• The references to sections of the textbook are only approximate. Some mate-
rial appears in this outline in a slightly different order than in the textbook.

• This list is meant to highlight the most important topics, but it is not ex-
haustive. You are responsible for the material in the readings and lectures.


