
Math 52 Exam 1 Topic List

David Dumas

What will be covered

The first exam will cover the material from the readings and lectures before Tuesday,
October 4. This corresponds approximately to chapters 1 and 2 and sections 3.1-3.3
from Strang.

There will be slightly more emphasis on material after section 2.2.

What to expect

The problems on the exam will closely resemble the problems from the homework.
The distribution of different types of questions (e.g. calculations vs. theoretical
exercises) will also mirror what you have seen on the homework assignments.

A typical question will ask you to apply the methods we have learned to a particular
example (perhaps involving some unknown quantities) and draw conclusions about
what the results mean.

How to prepare

In preparing for the exam, start by reviewing the reading and especially the “worked
problems” at the end of each section. Strang includes a list of “conceptual ques-
tions” at the end of the book (starting on p. 546); ask yourself these questions
after reviewing the reading, and make sure you can confidently answer them. For
practice, try a few problems from the textbook, especially those similar to the prob-
lems assigned for homework. Solutions to many exercises can be found starting on
p. 502.

Outline of topics

(1) Foundation in vector arithmetic (§§1.1 - 1.2)
(a) Addition, scalar multiplication, the dot product, linear combinations

(2) Representing linear equations using matrices and vectors (§2.1)
(a) A system of linear equations becomes Ax = b in matrix/vector nota-

tion.
(b) Row Picture - each equation determines a subset (e.g. a plane in R3, a

line in R2) of the space of potential solutions. Taking the intersection
gives the actual solution set.

(c) Column Picture - finding a solution x amounts to expressing the right
hand side b as a linear combination of the columns of A.

(d) Possible solution sets: none at all, exactly one, or infinitely many. If
x and y are solutions, so is 1

2 (x + y).

(3) Solving Linear Systems Ax = b (§2.2 - §2.3)
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(a) Gaussian Elimination - row operations put an invertible square matrix
A in upper triangular form U , possibly after exchanging some rows.

(b) The right hand side b is transformed into a vector c by applying the
same row operations.

(c) The augmented matrix [A b] is a convenient way to keep track of both
the matrix and the right-hand side during elimination.

(d) The pivots appear on the diagonal of U .
(e) Back-substitution solves the triangular system Ux = c (and this is

quite easy).
(f) Each row operation in the elimination process can be represented by

an elimination matrix Eij(`). Its looks like the n × n identity matrix
except for the (i, j) entry, which is −`.

(g) To determine the matrix representing a row operation (subtraction or
row exchange), apply the same operation to the identity matrix.

(4) Matrix Algebra (§§2.4-2.5)
(a) If A is m × n and B is n × p then the product AB exists and is an

m× p matrix.
(b) Each entry of AB is the dot product of a row from A and a column

from B.
(c) The summation formula

(AB)ij =
n∑

k=1

AikBkj

(d) Matrix multiplication is associative ((AB)C = A(BC)) but it is not
commutative (usually AB 6= BA).

(e) The square identity matrix I has 1 on the diagonal and 0 elsewhere.
(f) The inverse of a square matrix A is another matrix A−1 such that

AA−1 = A−1A = I

(g) The inverse of a product: (AB)−1 = B−1A−1

(h) The transpose operation: if A is m× n, then AT is n×m.

(AT )ij = Aji

(i) The transpose of a product: (AB)T = BT AT

(j) The inverse and transpose can be interchanged: (AT )−1 = (A−1)T

(k) A permutation matrix P has a exactly one 1 in each row and each
column; all other entries are zero.

(l) Permutation matrices satisfy PT = P−1.

(5) Finding the Inverse (§2.5)
(a) A square matrix may or may not have an inverse.
(b) The following are equivalent for a n× n (square) matrix:

(i) A has an inverse
(ii) A has n pivots (which are nonzero)
(iii) Ax = b has a solution for every b
(iv) Ax = 0 only when x = 0

(c) The definition of the inverse AA−1 = I is a system of linear equations
for the entries of A−1.
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(d) Gauss-Jordan elimination solves these equations simultaneously; it
transforms the augmented matrix [A I] into [I A−1] using elimina-
tion (downward and upward) and dividing rows by pivots.

(6) Elimination as Factorization (§§2.6-2.7)
(a) Gaussian elimination without row exchanges allows one to express an

invertible matrix A as a product of a lower triangular matrix L and
an upper triangular matrix U :

A = LU

(b) The matrix U is the final result of Gaussian elimination, while L is a
table of the multipliers used during elimination.

(c) In the LU decomposition, L has 1 on the diagonal, while U has pivots
on the diagonal.

(d) The closely related LDU decomposition separates the pivots from the
upper triangular matrix U . The diagonal matrix D contains the piv-
ots, while the new upper triangular matrix U ′ is obtained from U by
dividing each row by its pivot.

A = LDU ′

(e) In the LDU decomposition, both L and U have 1s on the diagonal.
(f) The LU decomposition gives a new way to solve Ax = b: first solve

Lc = b, then solve Ux = c. Both are triangular systems so this is
easy, using substitution.

(g) If row exchanges are necessary, the corresponding statement is that
PA has an LU decomposition for some permutation matrix P :

PA = LU

(7) Vector Spaces and Subspaces (§3.1)
(a) A vector space is a set V together with two operations, vector addition

and scalar multiplication, satisfying the rules on page 118 of Strang.
(b) Examples of vector spaces: Rn, M2×2, F, Z
(c) A subspace is a subset of a vector space that is closed under vector

addition and scalar multiplication.
(d) A subset W ⊂ V is a subspace if and only if both of these conditions

hold:
(i) For all x,y ∈ W , the sum (x + y) is also in W
(ii) For all x ∈ W and c ∈ R, the product cx is in W

(e) All subspaces contain the zero vector 0.
(f) If a subspace contains x, then it contains the entire line of multiples

of x, i.e. {cx | c ∈ R}.
(g) If a subspace contains a certain set of vectors, then it also contains

any linear combination of those vectors.
(h) The zero vector by itself is a subspace of any vector space.
(i) Subspaces of R2:

(i) The zero vector 0
(ii) A line containing 0
(iii) The entire plane R2

(j) Subspaces of R3:
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(i) The zero vector 0
(ii) A line containing 0
(iii) A plane containing 0
(iv) The entire space R3

(8) Column Space and Null Space (§§3.1-3.2)
(a) The column space C(A) of an m× n matrix A is the subspace of Rm

consisting of all linear combinations of the columns of A. (There are
n columns, each has m entries.)

(b) A system of linear equations Ax = b has a solution if and only if
b ∈ C(A).

(c) The null space N(A) of an m× n matrix A is the set of all vectors x
such that Ax = 0. It is a subspace of Rn.

(d) N(A) is a subspace because A is linear, i.e.
(i) A(x + y) = Ax + Ay
(ii) A(cx) = c(Ax)

(e) For a square invertible matrix, N(A) = 0, i.e. the only solution to
Ax = 0 is x = 0.

(f) If xparticular is a solution to Ax = b, and xnull ∈ N(A), then (xparticular+
xnull) is another solution of Ax = b.

(g) Finding the null space means solving Ax = 0; to do this, put A in
echelon form, obtaining a matrix U .

(h) The number of pivots obtained by putting A in echelon form is the
rank of A (which we call r).

(i) Solving Ux = 0 is equivalent to solving Ax = 0.
(j) The echelon matrix U has r pivot columns and (n − r) free columns.

There are corresponding pivot variables and free variables.
(k) The free columns of U are linear combinations of the previous columns.

The pivot columns are not linear combinations of previous columns.
(l) To find vectors in the null space, assign one of the free variables the

value 1, and set the rest to 0. Solve for the pivot variables to get a
special solution.

(m) The null space of A consists of the linear combinations of the n − r
special solutions.

(9) The Reduced Row Echelon Form (§3.3)
(a) An m × n matrix can be put into reduced row echelon form (RREF)

where each pivot column has a single nonzero entry, and this entry is
1.

(b) To get the RREF R from the echelon form U , eliminate upwards to
clear the entries above the pivots, then divide each row by its pivot.

(c) The RREF of a matrix is unique.
(d) The RREF matrix R makes it easier to find the special solutions,

because the coefficients of the free columns of R appear in the pivot
variables with opposite sign.

(e) The special solutions can be collected into the columns of a null space
matrix N . It has size n× (n− r).
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Note:

• The references to sections of the textbook are only approximate. Some
material appears in this outline in a slightly different order than in the
textbook.

• This list is meant to highlight the most important topics, but it is not ex-
haustive. You are responsible for the material in the readings and lectures.


