Groups of Möbius Transformations Homework 3

Note: Problems are of widely varying difficulty, and long problems are often the easy ones!

- (1) (Identifying Loxodromics)
 - (a) Let D be an open round disk in \mathbb{C} , and \overline{D} its closure. Suppose $\gamma \in PSL_2(\mathbb{C})$ and $\gamma(\overline{D}) \subset D$. Show that γ is loxodromic (or hyperbolic) with at least one fixed point in D.
 - (b) Use this to conclude that the fixed points of the generators of a classical schottky group are arranged as we've assumed in class; i.e. a has one fixed point in the interior of D_A and the other in the interior of D_a , and similarly for b.
- (2) Analyze how the cross ratio depends on the order of the four points. Specifically, let χ₀ = χ(z₁, z₂, z₃, z₄), and σ ∈ S₄, the symmetric group on four letters. This means that σ : {1, 2, 3, 4} → {1, 2, 3, 4} is a bijection. Express χ(σ) = χ(z_{σ(1)}, z_{σ(2)}, z_{σ(3)}, z_{σ(4)}) in terms of χ₀. (*Hint: It would suffice to list the result for each permutation of four letters, but a pattern should emerge if you attempt this. How many different values occur?*)
- (3) (Half Turns) An elliptic Möbius transformation of order 2 (i.e. γ² = I) is called a half turn. Recall that on homework 1, you proved that there are groups of half turns isomorphic to (Z/2) × (Z/2), and that all such groups are conjugate.
 - (a) Show that $\gamma \in PSL_2(\mathbb{C})$ is a half turn if and only if $tr(\gamma) = 0$.
 - (b) Let $a, b \in PSL_2(\mathbb{C})$ be half turns. Show that $\Gamma = \langle a, b \rangle \subset PSL_2(\mathbb{C})$ is discrete and elementary.(8/4/2002: Oops! This is not true. For example, any elliptic isthe composition of two half turns.)
 - (c) Let χ be the cross ratio of the set of fixed points of a and b, assuming they are distinct and ordering them in some way. Use χ to classify the groups that arise as $\langle a, b \rangle$, then analyze the special cases where a and b share fixed points. Show that χ "almost" determines the group up to conjugacy.
- (4) Let Γ be a discrete, non-elementary Kleinian group, and Ω its domain of discontinuity. Show that if {0,∞} ⊂ Ω, then the four matrix coefficients of any element of Γ are of comparable size. More precisely, show that there is a constant K > 0 such that for all γ = (^a_c ^b_d) ∈ Γ,

$$|a| \le K|b| \le K^2|c| \le K^3|d| \le K^4|a|.$$

Give examples showing why this doesn't work if $\{0,\infty\} \cap \Lambda \neq \emptyset$. (Maskit)

- (5) Construct Kleinian groups with elliptic elements such that
 - (a) neither
 - (b) one
 - (c) both

of the fixed points lie(s) in the limit set Λ . (*Hint: It is possible to do this by adding elliptic elements to examples considered in class.*) (Maskit)

(6) (Anti-Schottky groups) Let \mathscr{C} be a collection of N disjoint, unnested circles in \mathbb{C} , and let $\Gamma_{\mathscr{C}}$ be the group generated by the inversions in these circles. Recall that the inversion in a circle C is the unique anti-Möbius transformation that fixes each point of C and exchanges the inside and outside.

- (a) Show that if N is even, then $\Gamma_{\mathscr{C}}$ has a classical schottky group of rank N/2 as a subgroup of finite index, where the generators of the schottky group pair circles in \mathscr{C} .
- (b) What happens if N is odd? Draw a picture of the orbit of $\mathscr C$ under $\Gamma_{\mathscr C}$ for N=3.
- (7) (Congruence subgroups) Recall that the group $PSL_2(\mathbb{Z}) \subset PSL_2(\mathbb{C})$ was considered on homework 1 and 2, and that the Möbius transformations $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $T' = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ generate $PSL_2(\mathbb{Z})$, which is evidently a discrete subgroup of $PSL_2(\mathbb{C})$. We will now investigate how this group provides a rich supply of non-elementary, torsion-free Kleinian groups.
 - (a) Show that $T = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ also generate $PSL_2(\mathbb{Z})$. Note that the latter is a half-turn.
 - (b) Show that $PSL_2(\mathbb{Z})$ also contains an elliptic element R of order 3. Furthermore, any elliptic element of $PSL_2(\mathbb{Z})$ is conjugate to either R or S, and in particular has order 2 or 3.
 - (c) For any integer n > 0, define

 $\Gamma(n) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL_2(\mathbb{Z}) \mid a, d \equiv 1 \mod n, \ b, c \equiv 0 \mod n \},\$

which is called the principal congruence subgroup of level n; in other words, $\Gamma(n)$ consists of those Möbius transformations that can be represented by integral matrices that are congruent to the identity mod n. Show that $\Gamma(n)$ is a normal subgroup of $PSL_2(\mathbb{Z})$, and that for n > 1, $\Gamma(n)$ is torsion-free and non-elementary.

- (d) $\Gamma(1)$ is a shorthand notation for $PSL_2(\mathbb{Z})$. Show that $\Gamma(2)$ is generated by T^2 and T'^2 , has finite index in $\Gamma(1)$, and that the quotient $G = \Gamma(1)/\Gamma(2)$ is isomorphic to S_3 , the symmetric group on three letters.
- (8) (*Trace Identities*) Because this problem is about traces, let's consider matrices in $SL_2(\mathbb{C})$ to avoid the ± 1 ambiguity. The corresponding results for $PSL_2(\mathbb{C})$ should be evident.
 - (a) Use the Cayley-Hamilton theorem (a matrix is a root of its own characteristic polynomial) to show that for any $A \in SL_2(\mathbb{C})$,

$$A^2 - (\mathrm{tr}A)A + 1 = 0.$$

(b) Use this identity to show that any two elements $A, B \in SL_2(\mathbb{C})$ satisfy

$$\operatorname{tr}(AB) + tr(AB^{-1}) = \operatorname{tr}(A)\operatorname{tr}(B).$$

(c) Suppose that $A, B \in SL_2(\mathbb{C})$ and $[A, B] = ABA^{-1}B^{-1}$ is parabolic. Let x = tr(A), y = tr(B), z = tr(C). Show that

$$x^2 + y^2 + z^2 = zyz.$$

- (d) Show that for any $x, y \in \mathbb{C}$, there are matrices $A, B \in SL_2(\mathbb{C})$ with [A, B] parabolic and x = tr(A), y = tr(B).
- (e) (Bonus) Describe the manifold $\{(x, y, z) \mid x^2 + y^2 + z^2 = xyz\} \subset \mathbb{C}^3$.