
Groups of Möbius Transformations
Homework 3

Note: Problems are of widely varying difficulty, and long problems are often the easy ones!

(1) (Identifying Loxodromics)
(a) Let D be an open round disk in C, and D̄ its closure. Suppose γ ∈ PSL2(C)

and γ(D̄) ⊂ D. Show that γ is loxodromic (or hyperbolic) with at least one
fixed point in D.

(b) Use this to conclude that the fixed points of the generators of a classical schottky
group are arranged as we’ve assumed in class; i.e. a has one fixed point in the
interior of DA and the other in the interior of Da, and similarly for b.

(2) Analyze how the cross ratio depends on the order of the four points. Specifically, let
χ0 = χ(z1, z2, z3, z4), and σ ∈ S4, the symmetric group on four letters. This means
that σ : {1, 2, 3, 4} → {1, 2, 3, 4} is a bijection. Express χ(σ) = χ(zσ(1), zσ(2), zσ(3), zσ(4))
in terms of χ0. (Hint: It would suffice to list the result for each permutation of four
letters, but a pattern should emerge if you attempt this. How many different values
occur? )

(3) (Half Turns) An elliptic Möbius transformation of order 2 (i.e. γ2 = I) is called a
half turn. Recall that on homework 1, you proved that there are groups of half turns
isomorphic to (Z/2)× (Z/2), and that all such groups are conjugate.
(a) Show that γ ∈ PSL2(C) is a half turn if and only if tr(γ) = 0.
(b) Let a, b ∈ PSL2(C) be half turns. Show that Γ = 〈a, b〉 ⊂ PSL2(C) is discrete

and elementary.(8/4/2002: Oops! This is not true. For example, any elliptic is
the composition of two half turns.)

(c) Let χ be the cross ratio of the set of fixed points of a and b, assuming they are
distinct and ordering them in some way. Use χ to classify the groups that arise
as 〈a, b〉, then analyze the special cases where a and b share fixed points. Show
that χ “almost” determines the group up to conjugacy.

(4) Let Γ be a discrete, non-elementary Kleinian group, and Ω its domain of discontinuity.
Show that if {0,∞} ⊂ Ω, then the four matrix coefficients of any element of Γ are of
comparable size. More precisely, show that there is a constant K > 0 such that for
all γ =

(
a b
c d

)
∈ Γ,

|a| ≤ K|b| ≤ K2|c| ≤ K3|d| ≤ K4|a|.

Give examples showing why this doesn’t work if {0,∞} ∩ Λ 6= ∅. (Maskit)

(5) Construct Kleinian groups with elliptic elements such that
(a) neither
(b) one
(c) both

of the fixed points lie(s) in the limit set Λ. (Hint: It is possible to do this by adding
elliptic elements to examples considered in class.) (Maskit)

(6) (Anti-Schottky groups) Let C be a collection of N disjoint, unnested circles in C,
and let ΓC be the group generated by the inversions in these circles. Recall that the



inversion in a circle C is the unique anti-Möbius transformation that fixes each point
of C and exchanges the inside and outside.
(a) Show that if N is even, then ΓC has a classical schottky group of rank N/2 as a

subgroup of finite index, where the generators of the schottky group pair circles
in C .

(b) What happens if N is odd? Draw a picture of the orbit of C under ΓC for
N = 3.

(7) (Congruence subgroups) Recall that the group PSL2(Z) ⊂ PSL2(C) was considered
on homework 1 and 2, and that the Möbius transformations T = ( 1 1

0 1 ) and T ′ = ( 1 0
1 1 )

generate PSL2(Z), which is evidently a discrete subgroup of PSL2(C). We will now
investigate how this group provides a rich supply of non-elementary, torsion-free
Kleinian groups.
(a) Show that T = ( 1 0

1 1 ) and S =
(

0 1
−1 0

)
also generate PSL2(Z). Note that the

latter is a half-turn.
(b) Show that PSL2(Z) also contains an elliptic element R of order 3. Furthermore,

any elliptic element of PSL2(Z) is conjugate to either R or S, and in particular
has order 2 or 3.

(c) For any integer n > 0, define

Γ(n) = {
(
a b
c d

)
∈ PSL2(Z)

∣∣ a, d ≡ 1 mod n, b, c ≡ 0 mod n},
which is called the principal congruence subgroup of level n; in other words,
Γ(n) consists of those Möbius transformations that can be represented by in-
tegral matrices that are congruent to the identity mod n. Show that Γ(n) is
a normal subgroup of PSL2(Z), and that for n > 1, Γ(n) is torsion-free and
non-elementary.

(d) Γ(1) is a shorthand notation for PSL2(Z). Show that Γ(2) is generated by
T 2 and T ′2, has finite index in Γ(1), and that the quotient G = Γ(1)/Γ(2) is
isomorphic to S3, the symmetric group on three letters.

(8) (Trace Identities) Because this problem is about traces, let’s consider matrices in
SL2(C) to avoid the ±1 ambiguity. The corresponding results for PSL2(C) should
be evident.
(a) Use the Cayley-Hamilton theorem (a matrix is a root of its own characteristic

polynomial) to show that for any A ∈ SL2(C),

A2 − (trA)A+ 1 = 0.

(b) Use this identity to show that any two elements A,B ∈ SL2(C) satisfy

tr(AB) + tr(AB−1) = tr(A)tr(B).

(c) Suppose that A,B ∈ SL2(C) and [A,B] = ABA−1B−1 is parabolic. Let x =
tr(A), y = tr(B), z = tr(C). Show that

x2 + y2 + z2 = zyz.

(d) Show that for any x, y ∈ C, there are matrices A,B ∈ SL2(C) with [A,B]
parabolic and x = tr(A), y = tr(B).

(e) (Bonus) Describe the manifold {(x, y, z) | x2 + y2 + z2 = xyz} ⊂ C3.


