Groups of Mo6bius Transformations
Homework 3

Note: Problems are of widely varying difficulty, and long problems are often the easy ones!

(1)

(2)

(Identifying Loxodromics)

(a) Let D be an open round disk in C, and D its closure. Suppose v € PSLs(C)
and y(D) C D. Show that v is loxodromic (or hyperbolic) with at least one
fixed point in D.

(b) Use this to conclude that the fixed points of the generators of a classical schottky
group are arranged as we’ve assumed in class; i.e. a has one fixed point in the
interior of D 4 and the other in the interior of D,, and similarly for b.

Analyze how the cross ratio depends on the order of the four points. Specifically, let
Xo = X(z1, 22,23, 24), and o € Sy, the symmetric group on four letters. This means
that o : {1,2,3,4} — {1,2,3,4} is a bijection. Express x(0) = X(20(1), Z0(2)s Z0(3) Zo(4))
in terms of xo. (Hint: It would suffice to list the result for each permutation of four
letters, but a pattern should emerge if you attempt this. How many different values
occur?)

(Half Turns) An elliptic Mobius transformation of order 2 (i.e. v = I) is called a
half turn. Recall that on homework 1, you proved that there are groups of half turns
isomorphic to (Z/2) x (Z/2), and that all such groups are conjugate.

(a) Show that v € PSLy(C) is a half turn if and only if tr(y) = 0.

(b) Let a,b € PSL2(C) be half turns. Show that I' = (a,b) C PSL(C) is discrete
and elementary.(8/4/2002: Oops! This is not true. For example, any elliptic is
the composition of two half turns.)

(c¢) Let x be the cross ratio of the set of fixed points of a and b, assuming they are
distinct and ordering them in some way. Use x to classify the groups that arise
as (a,b), then analyze the special cases where a and b share fixed points. Show
that y “almost” determines the group up to conjugacy.

Let I" be a discrete, non-elementary Kleinian group, and €2 its domain of discontinuity.
Show that if {0,000} C Q, then the four matrix coefficients of any element of I are of
comparable size. More precisely, show that there is a constant K > 0 such that for
all vy = (‘gg) erl,

la| < Kb < K?[e| < K°|d| < K*|al.

Give examples showing why this doesn’t work if {0,00} N A # (). (Maskit)

Construct Kleinian groups with elliptic elements such that

(a) neither

(b) one

(c) both

of the fixed points lie(s) in the limit set A. (Hint: It is possible to do this by adding
elliptic elements to examples considered in class.) (Maskit)

(Anti-Schottky groups) Let € be a collection of N disjoint, unnested circles in C,
and let 'y be the group generated by the inversions in these circles. Recall that the



inversion in a circle C' is the unique anti-Mo6bius transformation that fixes each point
of C' and exchanges the inside and outside.

(a) Show that if N is even, then I'¢ has a classical schottky group of rank N/2 as a
subgroup of finite index, where the generators of the schottky group pair circles
in ¢.

(b) What happens if N is odd? Draw a picture of the orbit of € under 'y for
N =3.

(7) (Congruence subgroups) Recall that the group PSLy(Z) C PSLy(C) was considered
on homework 1 and 2, and that the Mébius transformations T = (1) and 7" = (1 9)
generate PSLy(Z), which is evidently a discrete subgroup of PSLy(C). We will now
investigate how this group provides a rich supply of non-elementary, torsion-free
Kleinian groups.

(a) Show that T'= (}19) and S = (% §) also generate PSLy(Z). Note that the
latter is a half-turn.

(b) Show that PSL2(Z) also contains an elliptic element R of order 3. Furthermore,
any elliptic element of PSLy(Z) is conjugate to either R or S, and in particular
has order 2 or 3.

(¢) For any integer n > 0, define

I'(n) ={(2Y) € PSLy(Z) | a,d =1 mod n, b,c =0 mod n},

which is called the principal congruence subgroup of level n; in other words,
I'(n) consists of those Mobius transformations that can be represented by in-
tegral matrices that are congruent to the identity mod n. Show that I'(n) is
a normal subgroup of PSLy(Z), and that for n > 1, I'(n) is torsion-free and
non-elementary.

(d) T'(1) is a shorthand notation for PSLy(Z). Show that T'(2) is generated by
T? and T'%, has finite index in T'(1), and that the quotient G = T'(1)/T'(2) is
isomorphic to S3, the symmetric group on three letters.

(8) (Trace Identities) Because this problem is about traces, let’s consider matrices in
SLy(C) to avoid the +1 ambiguity. The corresponding results for PSLy(C) should
be evident.

(a) Use the Cayley-Hamilton theorem (a matrix is a root of its own characteristic
polynomial) to show that for any A € SLs(C),
A% — (trA)A+1=0.
(b) Use this identity to show that any two elements A, B € SLy(C) satisfy
tr(AB) + tr(AB™1) = tr(A)tr(B).
(c) Suppose that A, B € SLy(C) and [A, B] = ABA™'B~! is parabolic. Let z =
tr(A), y = tr(B), z = tr(C). Show that
2 + y2 +22 = 2YZz.
(d) Show that for any x,y € C, there are matrices A, B € SLy(C) with [A, B]
parabolic and z = tr(A), y = tr(B).
(e) (Bonus) Describe the manifold {(x,y, 2) | 2% + y? + 22 = zyz} C C3.



