Groups of Möbius Transformations Homework 1

Note: Problems are of widely varying difficulty!

- (1) Show that the set of loxodromic elements is open and dense in $PSL_2(\mathbb{C})$. Give explicit examples of sequences of loxodromic Möbius transformations converging to T(z) = z + 1 and R(z) = iz.
- (2) Construct a subgroup of $PSL_2(\mathbb{C})$ isomorphic to $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$. Show that any two such subgroups are conjugate.
- (3) For any $\gamma \in PSL_2(\mathbb{C})$, let $H_{\gamma} \subset PSL_2(\mathbb{C})$ be the closure (in the topological sense) of the subgroup generated by γ . Show that H_{γ} is a subgroup of $PSL_2(\mathbb{C})$. What abstract groups arise as H_{γ} ?
- (4) Prove the following fact mentioned in lecture: The image of a circle in Ĉ under a Möbius transformation is also a circle. Recall that the intersection of a circle in Ĉ with the complex plane C is either a circle or a straight line. (*Hint: It suffices to prove this for a set of Möbius transformations that generate PSL*₂(ℂ).)
- (5) Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL_2(\mathbb{C})$, and let $C(z, r) = \{w \in \mathbb{C} \mid |w z| = r\}$, the circle of radius r with center z. By the result in the previous exercise, $\gamma(C(z, r)) = C(z', r')$ for some z' and r', except in some exceptional cases where the image is a straight line. Compute z' and r' in terms of z, r, a, b, c, d, and explain how the exceptional cases appear as limits of your formula.
- (6) (Computing with Anti-Möbius transformations) Let G denote the group of maps $\hat{\mathbb{C}} \to \hat{\mathbb{C}}$ generated by $G = PSL_2(\mathbb{C})$ and the complex conjugation map $c(z) = \bar{z}$.
 - (a) Show that \tilde{G} consists of maps of the form $f(z) = \frac{az+b}{cz+d}$ or $g(z) = \frac{a\bar{z}+b}{c\bar{z}+d}$, where $ad-bc \neq 0$. One might call a map of the latter sort an *anti-Möbius transformation*.
 - (b) Show that for any circle C in \mathbb{C} , there is a unique anti-Möbius transformation $I_C \in \tilde{G}$ that fixes each point in C and exchanges the inside and outside of C. This I_C is called the *inversion in* C. (Example: $c(z) = \bar{z}$ fixes $\hat{\mathbb{R}} = \mathbb{R} \cup \infty$ and exchanges the upper and lower half-planes.)
 - (c) One can represent an anti-Möbius transformation $z \mapsto \frac{a\overline{z}+b}{c\overline{z}+d}$ as a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where ad bc = -1 so as to distinguish it from an ordinary Möbius transformation. In this way, all elements of \tilde{G} can be represented using matrices of complex numbers. Write out the composition rule for two such matrices, which is no longer the ordinary matrix multiplication.
 - (d) Write out the inversion in the circle C(z, r) in matrix form. How can one determine whether or not $\gamma \in \tilde{G}$ is the inversion in *some* circle? Assuming that $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ does represent an inversion, determine the center and radius of the fixed circle in terms of a, b, c, d.
 - (e) Show that if $\gamma \in G$, and I_C is the inversion in C, then $\gamma I_C \gamma^{-1}$ is the inversion in $\gamma(C)$. Use the results in the previous part to re-derive the formula for the center and radius of the image of C(z, r) under γ .

- (7) (Lattices in \mathbb{C}) As discussed in lecture, the group $\Gamma_{\tau} = \langle z \mapsto z+1, z \mapsto z+\tau \rangle$ acts on \mathbb{C} to give a quotient torus E_{τ} for any $\tau \in (\mathbb{C} \mathbb{R})$. Furthermore, any group generated by two translations is conjugate to Γ_{τ} for some τ . Since Γ_{τ} and $\Gamma_{-\tau}$ are the same as subgroups of $PSL_2(\mathbb{C})$, it suffices to consider $\tau \in \mathbb{H} = \{z \in \mathbb{C} \mid im(z) > 0\}$.
 - (a) Show that $\Gamma_{\tau} = \Gamma_{\tau+1}$.
 - (b) Show that Γ_{τ} is conjugate to $\Gamma_{-1/\tau}$.
 - (c) Describe the set of all $\gamma \in PSL_2(\mathbb{C})$ such that $\gamma \Gamma_{\tau} \gamma^{-1}$ is a group of translations.
 - (d) Consider the subgroup $SL_2(\mathbb{Z}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{C}) \mid a, b, c, d \in \mathbb{Z} \} \subset SL_2(\mathbb{C}),$ and its image $PSL_2(\mathbb{Z})$ in $PSL_2(\mathbb{C})$. Show that the Möbius transformations in $PSL_2(Z)$ map \mathbb{H} to itself.
 - (e) Show that Γ_{τ} is conjugate to Γ_{η} if and only if there exists a Möbius transformation $\gamma \in PSL_2(\mathbb{Z})$ such that $\gamma(\tau) = \eta$. (*Hint: Examine the group* $\langle \tau \mapsto \tau + 1, \tau \mapsto -1/\tau \rangle$.) In particular, there are infinitely many values of τ for which the groups Γ_{τ} are conjugate to one another.
 - (f) It would be nice to classify discrete groups generated by two translations up to conjugacy in $PSL_2(\mathbb{C})$, but clearly the parameter τ for Γ_{τ} is not a good choice, as it is far from uniquely determined. Let $\Gamma \subset PSL_2(\mathbb{C})$ be a discrete group generated by two translations, $(z \mapsto z + a)$ an element of Γ with the shortest translation distance, and $(z \mapsto z + b)$ an element with the shortest translation distance that are not equal to $(z \mapsto z \pm a)$ (the "second shortest"). Let $\eta = \pm (b/a)$, choosing sign so that $\tau \in \mathbb{H}$. Show that Γ is conjugate to Γ_{η} .
 - (g) This η is not uniquely determined by Γ because there may be several shortest translations (give an example). Show that there are at most two values of η that could arise for a given group Γ .
 - (h) Draw a picture of the set F of all $\eta \in \mathbb{H}$ that can arise for different discrete groups Γ generated by two translations. Argue that F is a fundamental domain for $PSL_2(\mathbb{Z})$ acting on \mathbb{H} , meaning that if $\gamma \in PSL_2(\mathbb{Z})$, then $\gamma(\operatorname{int} F) \cap F = \emptyset$ and F contains at least one point from each $PSL_2(\mathbb{Z})$ orbit.
 - (i) Describe the quotient $\mathbb{H}/PSL_2(\mathbb{Z})$.