Math 535: Complex Analysis - Spring 2016 - David Dumas Practice Midterm Exam

Instructions:

- Complete three of the problems below.
- Each problem is worth 10 points.
- If you complete more than three problems (which is not recommended) your score will be the sum of your three best problem scores.

Problems:

(1) Consider the circles

$$
C_{1}=\{z:|z|=1\}, C_{2}=\{z:|z-1|=3\} .
$$

Find a linear fractional transformation T so that $T\left(C_{1}\right)$ and $T\left(C_{2}\right)$ are concentric circles.
(2) Find a conformal mapping from the open first quadrant to the complement of the closed unit disk, i.e. from

$$
\left\{z: 0<\arg (z)<\frac{\pi}{2}\right\}
$$

to

$$
\{z:|z|>1\}
$$

(3) Let γ be the circle $|z|=535$ oriented counter-clockwise. Calculate:

$$
\int_{\gamma} \frac{\cos (z / 2)}{4 z^{2}-\pi^{2}} d z
$$

(4) Suppose f is a holomorphic function with a zero of order 2 at $z=0$. Show that there is an analytic function g on an open disk centered at $z=0$ such that $f(z)=g(z)^{2}$ on their common domain.
(5) Let f be an entire function, and suppose that f does not take on any positive real values. Show that f is constant.

