Math 535: Complex Analysis - Spring 2016 - David Dumas
 Practice Final Exam

- Complete five of the problems below.
- Each problem is worth 10 points.
- If you complete more than three problems (which is not recommended) your score will be the sum of your five best problem scores.

Problems:

(1) Compute

$$
\oint_{S^{1}} \frac{d z}{25600 z-z^{3}+z^{5}-99 z^{9}}
$$

where S^{1} denotes the unit circle $\{z:|z|=1\}$ with the counter-clockwise orientation.
(2) Let

$$
f_{n}(z)=\exp \left(-\left(\frac{z}{1}+\frac{z^{2}}{2}+\cdots+\frac{z^{n}}{n}\right)\right)
$$

(a) Show that f_{n} converges locally uniformly on $\Delta=\{z:|z|<1\}$, and identify the limit function.
(b) Does f_{n} converge locally uniformly on $|z|<2$?
(3) Find the Laurent expansion for the function $\frac{12}{z^{2}(z+1)(z-2)}$ in the annulus $1<|z|<2$.
(4) Compute $\int_{0}^{\infty} \frac{x^{2} d x}{x^{4}+5 x^{2}+4}$.
(5) Does there exist an entire function f with no zeros and so that the real solutions of the equation $f(x)=1$ are exactly the prime numbers? (That is, $f(p)=1$ for each prime $p \in \mathbb{N}$, and if $x \in \mathbb{R}$ is not a prime, then $f(x) \neq 1$.)

Either construct such a function or prove that no such function exists.
(6) Construct a conformal mapping $f: \triangleleft \rightarrow \Omega$ where

$$
\diamond=\left\{z: 0<|z|<1,|\arg (z)|<\frac{\pi}{8}\right\}
$$

and

$$
\Omega=\mathbb{H} \backslash\{i y: y \in(0,535]\} .
$$

(7) Can a (real-valued) harmonic function on an open set in \mathbb{C} have an isolated zero? Offer an example or a proof that it is impossible.
(8) Write a formula for a conformal mapping from the upper half plane to an equilateral triangle of unit side length.

