
Math 535: Complex Analysis – Spring 2016 – David Dumas

Practice Final Exam Solutions

• Complete five of the problems below.
• Each problem is worth 10 points.
• If you complete more than three problems (which is not recommended) your score will be

the sum of your five best problem scores.

Problems:
(1) Compute ∮

S1

dz
25600z− z3 + z5−99z9

where S1 denotes the unit circle {z : |z|= 1} with the counter-clockwise orientation.

Solution. We use the residue theorem. The integrand has a simple pole at the origin, and
we must determine whether it has any other poles in the unit disk. Let f (z) = 25600z−
z3 + z5−99z9 denote the denominator, and let

g(z) = 25600z−100z9 = 100z(256− z8)

which is a polynomial with a root at z = 0 and all of its other roots on |z|= 2. Since

f (z) = g(z)+ z9 + z5− z3

we find for |z|= 1 that
| f (z)−g(z)|6 3

whereas
| f (z)|>

∣∣|25600z|− |99z9|
∣∣> 25501

also for |z|= 1. Thus | f −g|< | f | on S1, and by Rouché’s theorem, f and g have the same
number of roots in the unit disk, i.e. one.

Therefore the integral we want to compute is equal to

2πi Resz=0
1

f (z)
= 2πi lim

z→0

z
f (z)

= 2πi lim
z→0

1
25600− z2 + z4−99z8 =

πi
12800

.

(2) Let

fn(z) = exp
(
−
(

z
1
+

z2

2
+ · · ·+ zn

n

))
.

(a) Show that fn converges locally uniformly on ∆ = {z : |z|< 1}, and identify the limit
function.

(b) Does fn converge locally uniformly on |z|< 2?

Solution.
(a) The Taylor series for the principal branch of log(1− z) is −∑

∞
k=1

zk

k , and fn = exp(sn)

where sn is the nth partial sum of this series. Since log(1−z) is holomorphic in ∆, we have



sn→ log(1− z) locally uniformly in this disk. Thus if we can show that locally uniform
convergence is preserved by composition with exp, it will follow that

fn→ exp(log(1− z)) = 1− z

on ∆.
On any closed disk D in C there is a constant M such that |exp(z)−exp(w)|6 M|z−w|;

in fact, we can take M = supz∈D |exp(z)|. For any such D contained in ∆ and any ε > 0
we therefore have

| fn(z)− (1− z)|= |exp(sn(z))− exp(log(1− z))|< ε

for all z∈D once we take n large enough that |sn(z)− log(1−z)|< ε/M, which is possible
by the uniform convergence of sn on D. Thus fn→ (1− z) locally uniformly on ∆.

(b) No. If fn had a locally uniform limit on {z : |z| < 2} then the limit would be a
holomorphic function equal to 1− z on ∆, and hence everywhere. However 1− z has an
isolated zero at z = 1, and by Hurwitz’s theorem it cannot be the locally uniform limit of
the sequence of nowhere-vanishing functions fn = exp(sn).

(3) Find the Laurent expansion for the function
12

z2(z+1)(z−2)
in the annulus 1 < |z|< 2.

Solution. The annulus is centered at zero, so this Laurent expansion will consist of
powers of z = (z− 0). One can proceed by the general formula for coefficients or by
partial fraction decomposition. We choose the latter.

Notice that
12

z2(z+1)(z−2)
=

3(z−2)
z2 − 4

z+1
+

1
z−2

.

In |z|> 1 we have

− 4
z+1

=−4
z

1
1+ z−1 =−4

z

(
1− z−1 + z−2− z−3 + · · ·

)
=−4z−1 +4z−2−4z−3 +4z−4−·· · ,

where the expression in parentheses is a convergent geometric series. Similarly, using
|z|< 2 we have

1
z−2

=−1
2

(
1

1− z
2

)
=−1

2

(
1+

1
2

z+
1
4

z2 +
1
8

z3 + · · ·
)

=−1
2
− 1

4
z− 1

8
z2− 1

16
z3−·· ·

Finally we expand
3(z−2)

z2 =− 6
z2 +

3
z

Adding these series we find:

12
z2(z+1)(z−2)

=

(
−3

∑
k=−∞

(−1)k4zk

)
−2z−2− z−1 +

(
∞

∑
k=0

−1
2k+1 zk

)



(4) Compute
∫

∞

0

x2 dx
x4 +5x2 +4

.

Solution. We convert to a contour integral and use residues. Let

f (z) =
z2

z4 +5z2 +4
=

z2

(z2 +1)(z2 +4)

be the integrand and and let

I =
∫

∞

0
f (x)dx

denote the integral in question. Since f (x) is even we have 2I =
∫

∞

−∞
f (x)dx.

Let DR denote the closed contour in C that is the concatenation of the real interval
[−R,R], oriented in the increasing direction, and the counterclockwise orientation of the
upper semicircle on |z|= R. Denote the latter semicircle by CR. Then we have∮

DR

f (z)dz =
∫ R

−R
f (x)dx+

∫
CR

f (z)dz.

Since f has a zero of order 2 at infinity, for large |z| it is bounded by M/|z|2, where M is a
constant. Thus for large R we have∣∣∣∣∫CR

f (z)dz
∣∣∣∣6 πR

M
R2

which goes to zero as R→ ∞, hence

lim
R→∞

∮
DR

f (z)dz = lim
R→∞

∫ R

−R
f (x)dx = 2I

The left hand side is constant for R large enough and is equal to the sum of residues in the
upper half plane. Specifically, we find

I = πi(Resz=i f (z)+Resz=2i f (z))

since z = i and z = 2i are the poles in the upper half plane. Both of these poles are simple,
so we have

Resz=i f (z) = lim
z→i

(z− i) f (z) = lim
z→i

z2

(z+ i)(z2 +4)

=
i2

(2i)(i2 +4)
=

i
6

and

Resz=2i f (z) = lim
z→2i

(z−2i) f (z) = lim
z→2i

z2

(z2 +1)(z+2i)

=
4i2

(4i2 +1)(2i+2i)
=
−i
3
.

Substituting, we find

I = πi(
i
6
− i

3
) =

π

6
.



(5) Does there exist an entire function f with no zeros and so that the real solutions of the
equation f (x) = 1 are exactly the prime numbers? (That is, f (p) = 1 for each prime
p ∈ N, and if x ∈ R is not a prime, then f (x) 6= 1.)

Either construct such a function or prove that no such function exists.

Solution. We will construct such a function f . Suppose g is an entire function which
has zeros only at the primes, and which is real on R. Then f = exp(g) has the desired
properties:
• As the exponential of a function, f is never zero
• The equation f (x) = 1 is equivalent to g(x) = 2πik and k ∈ Z. However, since g(x) ∈
R for x ∈ R, the only possibility for such x is k = 0, and the only zeros of g are the
primes.

The construction of g is easily accomplished by the Weierstrass factorization theorem.
Since

∑
p prime

1
p2 <

∞

∑
n=1

1
n2 < ∞,

the infinite product of genus one

g(z) = ∏
p prime

(
1− z

p

)
exp
(

z
p

)
defines an entire function whose zero set is the set of primes. Furthermore, each factor in
the product is real when z ∈ R, hence g is real on R.

(6) Construct a conformal mapping f :2→Ω where

2= {z : 0 < |z|< 1, |arg(z)|< π

8
}

and
Ω =H\{iy : y ∈ (0,535]}.

Solution. First consider the function h(z) = z8, which satisfies arg(h(z)) = 8arg(z) and
therefore maps 2 conformally the slit disk

∆
′ = {z : 0 < |z|< 1, arg(z) ∈ (−π,π)}= ∆\{x ∈ R,x 6 0}

Now we apply a Möbius transformation to map the disk to the upper half-plane, chosen so
as to map the slit of ∆′ to the correct interval on the imaginary axis. Specifically, let

g(z) = i
1+ z
1− z

.

Since g(−1) = 0, g(i) =−1, g(1) = ∞ we have that g maps the unit circle to the real axis.
Also, g(0) = i shows that the unit disk maps to the upper half-plane, and that the interval
(−1,0] on R maps to a line or circular arc in H with endpoints 0 and i. Calculating

g(z̄) = i
1+ z̄
1− z̄

=

(
−i

1+ z
1− z

)
=−g(z)

we find that z = z̄ implies g(z) = −g(z), that is, the correspondence w = g(z) maps real
z to purely imaginary w. Thus the slit (−1,0] of ∆′ corresponds by g to the line segment



{iy : y ∈ (0,1]}. Finally, multiplying by 535 preserves H and transforms this segment to
the one in the definition of Ω.

Composing these operations, we find

f (z) = 535g(h(z)) = 535i
1+ z8

1− z8

is a map with the desired properties.

(7) Can a (real-valued) harmonic function on an open set in C have an isolated zero? Offer an
example or a proof that it is impossible.

Solution. No, this is impossible. Suppose u(a) = 0 were isolated. Then for suffi-
ciently small ρ we have that {z : |z− a| 6 ρ} is contained in the domain of u and that
g(θ) = u(a+ρeiθ ) is nonzero for all θ . Since g(θ) is a continuous function of θ with no
zeros, it is either everywhere positive or everywhere negative. In either case we conclude∫ 2π

0 g(θ)dθ 6= 0. However, by the mean value property of harmonic functions we have

0 = u(a) =
1

2π

∫ 2π

0
g(θ)dθ ,

a contradiction.

(8) Write a formula for a conformal mapping from the upper half plane to an equilateral
triangle of unit side length.

Solution. By the Schwarz-Christoffel theorem, for any base point z0 ∈H the mapping

g(z) =
∫ z

z0

dζ

ζ
2
3 (ζ −1)

2
3

is conformal onto a triangle in C with internal angles (π/3,π/3,π/3) at vertices corre-
sponding to (0,1,∞)∈ ∂H. Equiangular triangles are equilateral, so we need only multiply
by a suitable real constant so that the side length is 1.

The formula above gives that the side length of the image triangle is

|g(1)−g(0)|=

∣∣∣∣∣
∫ 1

0

dx

x
2
3 (x−1)

2
3

∣∣∣∣∣=
∫ 1

0

dx

x
2
3 (1− x)

2
3
,

where the last equality holds by factoring out the constant (−1)−
2
3 of modulus one, leaving

a positive integrand. Thus we find

f (z) =

∫ z

z0

dζ

ζ
2
3 (ζ−1)

2
3∫ 1

0

dx

x
2
3 (1−x)

2
3

has the desired properties.

Remark. It can be shown that
∫ 1

0

dx

x
2
3 (1− x)

2
3
=

Γ(1
3)Γ(

1
6)

2
2
3
√

π

.


