Math 535: Complex Analysis - Spring 2016 - David Dumas Practice Final Exam Solutions

- Complete five of the problems below.
- Each problem is worth 10 points.
- If you complete more than three problems (which is not recommended) your score will be the sum of your five best problem scores.

Problems:

(1) Compute

$$
\oint_{S^{1}} \frac{d z}{25600 z-z^{3}+z^{5}-99 z^{9}}
$$

where S^{1} denotes the unit circle $\{z:|z|=1\}$ with the counter-clockwise orientation.
Solution. We use the residue theorem. The integrand has a simple pole at the origin, and we must determine whether it has any other poles in the unit disk. Let $f(z)=25600 z-$ $z^{3}+z^{5}-99 z^{9}$ denote the denominator, and let

$$
g(z)=25600 z-100 z^{9}=100 z\left(256-z^{8}\right)
$$

which is a polynomial with a root at $z=0$ and all of its other roots on $|z|=2$. Since

$$
f(z)=g(z)+z^{9}+z^{5}-z^{3}
$$

we find for $|z|=1$ that

$$
|f(z)-g(z)| \leqslant 3
$$

whereas

$$
|f(z)| \geqslant\left||25600 z|-\left|99 z^{9}\right|\right| \geqslant 25501
$$

also for $|z|=1$. Thus $|f-g|<|f|$ on S^{1}, and by Rouché's theorem, f and g have the same number of roots in the unit disk, i.e. one.

Therefore the integral we want to compute is equal to

$$
2 \pi i \operatorname{Res}_{z=0} \frac{1}{f(z)}=2 \pi i \lim _{z \rightarrow 0} \frac{z}{f(z)}=2 \pi i \lim _{z \rightarrow 0} \frac{1}{25600-z^{2}+z^{4}-99 z^{8}}=\frac{\pi i}{12800} .
$$

(2) Let

$$
f_{n}(z)=\exp \left(-\left(\frac{z}{1}+\frac{z^{2}}{2}+\cdots+\frac{z^{n}}{n}\right)\right)
$$

(a) Show that f_{n} converges locally uniformly on $\Delta=\{z:|z|<1\}$, and identify the limit function.
(b) Does f_{n} converge locally uniformly on $|z|<2$?

Solution.
(a) The Taylor series for the principal branch of $\log (1-z)$ is $-\sum_{k=1}^{\infty} \frac{z^{k}}{k}$, and $f_{n}=\exp \left(s_{n}\right)$ where s_{n} is the $n^{\text {th }}$ partial sum of this series. Since $\log (1-z)$ is holomorphic in Δ, we have
$s_{n} \rightarrow \log (1-z)$ locally uniformly in this disk. Thus if we can show that locally uniform convergence is preserved by composition with exp, it will follow that

$$
f_{n} \rightarrow \exp (\log (1-z))=1-z
$$

on Δ.
On any closed disk D in \mathbb{C} there is a constant M such that $|\exp (z)-\exp (w)| \leqslant M|z-w|$; in fact, we can take $M=\sup _{z \in D}|\exp (z)|$. For any such D contained in Δ and any $\varepsilon>0$ we therefore have

$$
\left|f_{n}(z)-(1-z)\right|=\left|\exp \left(s_{n}(z)\right)-\exp (\log (1-z))\right|<\varepsilon
$$

for all $z \in D$ once we take n large enough that $\left|s_{n}(z)-\log (1-z)\right|<\varepsilon / M$, which is possible by the uniform convergence of s_{n} on D. Thus $f_{n} \rightarrow(1-z)$ locally uniformly on Δ.
(b) No. If f_{n} had a locally uniform limit on $\{z:|z|<2\}$ then the limit would be a holomorphic function equal to $1-z$ on Δ, and hence everywhere. However $1-z$ has an isolated zero at $z=1$, and by Hurwitz's theorem it cannot be the locally uniform limit of the sequence of nowhere-vanishing functions $f_{n}=\exp \left(s_{n}\right)$.
(3) Find the Laurent expansion for the function $\frac{12}{z^{2}(z+1)(z-2)}$ in the annulus $1<|z|<2$.

Solution. The annulus is centered at zero, so this Laurent expansion will consist of powers of $z=(z-0)$. One can proceed by the general formula for coefficients or by partial fraction decomposition. We choose the latter.

Notice that

$$
\frac{12}{z^{2}(z+1)(z-2)}=\frac{3(z-2)}{z^{2}}-\frac{4}{z+1}+\frac{1}{z-2} .
$$

In $|z|>1$ we have

$$
\begin{aligned}
-\frac{4}{z+1} & =-\frac{4}{z} \frac{1}{1+z^{-1}}=-\frac{4}{z}\left(1-z^{-1}+z^{-2}-z^{-3}+\cdots\right) \\
& =-4 z^{-1}+4 z^{-2}-4 z^{-3}+4 z^{-4}-\cdots
\end{aligned}
$$

where the expression in parentheses is a convergent geometric series. Similarly, using $|z|<2$ we have

$$
\begin{aligned}
\frac{1}{z-2} & =-\frac{1}{2}\left(\frac{1}{1-\frac{z}{2}}\right)=-\frac{1}{2}\left(1+\frac{1}{2} z+\frac{1}{4} z^{2}+\frac{1}{8} z^{3}+\cdots\right) \\
& =-\frac{1}{2}-\frac{1}{4} z-\frac{1}{8} z^{2}-\frac{1}{16} z^{3}-\cdots
\end{aligned}
$$

Finally we expand

$$
\frac{3(z-2)}{z^{2}}=-\frac{6}{z^{2}}+\frac{3}{z}
$$

Adding these series we find:

$$
\frac{12}{z^{2}(z+1)(z-2)}=\left(\sum_{k=-\infty}^{-3}(-1)^{k} 4 z^{k}\right)-2 z^{-2}-z^{-1}+\left(\sum_{k=0}^{\infty} \frac{-1}{2^{k+1}} z^{k}\right)
$$

(4) Compute $\int_{0}^{\infty} \frac{x^{2} d x}{x^{4}+5 x^{2}+4}$.

Solution. We convert to a contour integral and use residues. Let

$$
f(z)=\frac{z^{2}}{z^{4}+5 z^{2}+4}=\frac{z^{2}}{\left(z^{2}+1\right)\left(z^{2}+4\right)}
$$

be the integrand and and let

$$
I=\int_{0}^{\infty} f(x) d x
$$

denote the integral in question. Since $f(x)$ is even we have $2 I=\int_{-\infty}^{\infty} f(x) d x$.
Let D_{R} denote the closed contour in \mathbb{C} that is the concatenation of the real interval $[-R, R]$, oriented in the increasing direction, and the counterclockwise orientation of the upper semicircle on $|z|=R$. Denote the latter semicircle by C_{R}. Then we have

$$
\oint_{D_{R}} f(z) d z=\int_{-R}^{R} f(x) d x+\int_{C_{R}} f(z) d z .
$$

Since f has a zero of order 2 at infinity, for large $|z|$ it is bounded by $M /|z|^{2}$, where M is a constant. Thus for large R we have

$$
\left|\int_{C_{R}} f(z) d z\right| \leqslant \pi R \frac{M}{R^{2}}
$$

which goes to zero as $R \rightarrow \infty$, hence

$$
\lim _{R \rightarrow \infty} \oint_{D_{R}} f(z) d z=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=2 I
$$

The left hand side is constant for R large enough and is equal to the sum of residues in the upper half plane. Specifically, we find

$$
I=\pi i\left(\operatorname{Res}_{z=i} f(z)+\operatorname{Res}_{z=2 i} f(z)\right)
$$

since $z=i$ and $z=2 i$ are the poles in the upper half plane. Both of these poles are simple, so we have

$$
\begin{aligned}
\operatorname{Res}_{z=i} f(z) & =\lim _{z \rightarrow i}(z-i) f(z)=\lim _{z \rightarrow i} \frac{z^{2}}{(z+i)\left(z^{2}+4\right)} \\
& =\frac{i^{2}}{(2 i)\left(i^{2}+4\right)}=\frac{i}{6}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Res}_{z=2 i} f(z) & =\lim _{z \rightarrow 2 i}(z-2 i) f(z)=\lim _{z \rightarrow 2 i} \frac{z^{2}}{\left(z^{2}+1\right)(z+2 i)} \\
& =\frac{4 i^{2}}{\left(4 i^{2}+1\right)(2 i+2 i)}=\frac{-i}{3} .
\end{aligned}
$$

Substituting, we find

$$
I=\pi i\left(\frac{i}{6}-\frac{i}{3}\right)=\frac{\pi}{6}
$$

(5) Does there exist an entire function f with no zeros and so that the real solutions of the equation $f(x)=1$ are exactly the prime numbers? (That is, $f(p)=1$ for each prime $p \in \mathbb{N}$, and if $x \in \mathbb{R}$ is not a prime, then $f(x) \neq 1$.)

Either construct such a function or prove that no such function exists.
Solution. We will construct such a function f. Suppose g is an entire function which has zeros only at the primes, and which is real on \mathbb{R}. Then $f=\exp (g)$ has the desired properties:

- As the exponential of a function, f is never zero
- The equation $f(x)=1$ is equivalent to $g(x)=2 \pi i k$ and $k \in \mathbb{Z}$. However, since $g(x) \in$ \mathbb{R} for $x \in \mathbb{R}$, the only possibility for such x is $k=0$, and the only zeros of g are the primes.
The construction of g is easily accomplished by the Weierstrass factorization theorem. Since

$$
\sum_{p \text { prime }} \frac{1}{p^{2}}<\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

the infinite product of genus one

$$
g(z)=\prod_{p \text { prime }}\left(1-\frac{z}{p}\right) \exp \left(\frac{z}{p}\right)
$$

defines an entire function whose zero set is the set of primes. Furthermore, each factor in the product is real when $z \in \mathbb{R}$, hence g is real on \mathbb{R}.
(6) Construct a conformal mapping $f: \triangleleft \rightarrow \Omega$ where

$$
\diamond=\left\{z: 0<|z|<1,|\arg (z)|<\frac{\pi}{8}\right\}
$$

and

$$
\Omega=\mathbb{H} \backslash\{i y: y \in(0,535]\} .
$$

Solution. First consider the function $h(z)=z^{8}$, which satisfies $\arg (h(z))=8 \arg (z)$ and therefore maps \langle conformally the slit disk

$$
\Delta^{\prime}=\{z: 0<|z|<1, \arg (z) \in(-\pi, \pi)\}=\Delta \backslash\{x \in \mathbb{R}, x \leqslant 0\}
$$

Now we apply a Möbius transformation to map the disk to the upper half-plane, chosen so as to map the slit of Δ^{\prime} to the correct interval on the imaginary axis. Specifically, let

$$
g(z)=i \frac{1+z}{1-z}
$$

Since $g(-1)=0, g(i)=-1, g(1)=\infty$ we have that g maps the unit circle to the real axis. Also, $g(0)=i$ shows that the unit disk maps to the upper half-plane, and that the interval $(-1,0]$ on \mathbb{R} maps to a line or circular arc in \mathbb{H} with endpoints 0 and i. Calculating

$$
g(\bar{z})=i \frac{1+\bar{z}}{1-\bar{z}}=\overline{\left(-i \frac{1+z}{1-z}\right)}=-\overline{g(z)}
$$

we find that $z=\bar{z}$ implies $g(z)=-\overline{g(z)}$, that is, the correspondence $w=g(z)$ maps real z to purely imaginary w. Thus the slit $(-1,0]$ of Δ^{\prime} corresponds by g to the line segment
$\{i y: y \in(0,1]\}$. Finally, multiplying by 535 preserves \mathbb{H} and transforms this segment to the one in the definition of Ω.

Composing these operations, we find

$$
f(z)=535 g(h(z))=535 i \frac{1+z^{8}}{1-z^{8}}
$$

is a map with the desired properties.
(7) Can a (real-valued) harmonic function on an open set in \mathbb{C} have an isolated zero? Offer an example or a proof that it is impossible.
Solution. No, this is impossible. Suppose $u(a)=0$ were isolated. Then for sufficiently small ρ we have that $\{z:|z-a| \leqslant \rho\}$ is contained in the domain of u and that $g(\theta)=u\left(a+\rho e^{i \theta}\right)$ is nonzero for all θ. Since $g(\theta)$ is a continuous function of θ with no zeros, it is either everywhere positive or everywhere negative. In either case we conclude $\int_{0}^{2 \pi} g(\theta) d \theta \neq 0$. However, by the mean value property of harmonic functions we have

$$
0=u(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\theta) d \theta
$$

a contradiction.
(8) Write a formula for a conformal mapping from the upper half plane to an equilateral triangle of unit side length.
Solution. By the Schwarz-Christoffel theorem, for any base point $z_{0} \in \mathbb{H}$ the mapping

$$
g(z)=\int_{z_{0}}^{z} \frac{d \zeta}{\zeta^{\frac{2}{3}}(\zeta-1)^{\frac{2}{3}}}
$$

is conformal onto a triangle in \mathbb{C} with internal angles $(\pi / 3, \pi / 3, \pi / 3)$ at vertices corresponding to $(0,1, \infty) \in \partial \mathbb{H}$. Equiangular triangles are equilateral, so we need only multiply by a suitable real constant so that the side length is 1 .

The formula above gives that the side length of the image triangle is

$$
|g(1)-g(0)|=\left|\int_{0}^{1} \frac{d x}{x^{\frac{2}{3}}(x-1)^{\frac{2}{3}}}\right|=\int_{0}^{1} \frac{d x}{x^{\frac{2}{3}}(1-x)^{\frac{2}{3}}},
$$

where the last equality holds by factoring out the constant $(-1)^{-\frac{2}{3}}$ of modulus one, leaving a positive integrand. Thus we find

$$
f(z)=\frac{\int_{z_{0}}^{z} \frac{d \zeta}{\zeta^{\frac{2}{3}}(\zeta-1)^{\frac{2}{3}}}}{\int_{0}^{1} \frac{d x}{x^{\frac{2}{3}}(1-x)^{\frac{2}{3}}}}
$$

has the desired properties.
Remark. It can be shown that $\int_{0}^{1} \frac{d x}{x^{\frac{2}{3}}(1-x)^{\frac{2}{3}}}=\frac{\Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{1}{6}\right)}{2^{\frac{2}{3}} \sqrt{\pi}}$.

