Math 535: Complex Analysis - Spring 2016 - David Dumas Midterm Exam

Instructions:

- Complete three of the problems below.
- Each problem is worth 10 points.
- If you complete more than three problems (which is not recommended) your score will be the sum of your three best problem scores.
- None of these problems require long, complicated calculations.

Problems:

(1) Is it possible to conformally map the punctured complex plane $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ to the annulus $A=\{z: 1<|z|<2\}$? If it is possible, find such a conformal map. If not, prove that it is impossible.
(2) Suppose $a, b, c, d \in \mathbb{C}$. Show that the following conditions are equivalent:
(i) There exists a linear fractional transformation S such that $S a, S b, S c, S d$ are the vertices of a square, listed in counter-clockwise order.
(ii) $\frac{(a-c)(b-d)}{(b-c)(a-d)}=2$.
(3) Suppose that f is analytic on a region Ω and that $|f(z)-1|<1$ for all $z \in \Omega$. Show that

$$
\oint_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=0
$$

for every closed curve $\gamma \subset \Omega$.
(4) Let γ be the circle $|z|=2016$ oriented counter-clockwise. Calculate:

$$
\oint_{\gamma} \frac{e^{z}-1}{z} d z
$$

(5) Suppose f is holomorphic and has a simple zero at $z=0$. (That is, $f(0)=0$ and $f^{\prime}(0) \neq 0$.) Show that there does not exist a function g holomorphic in an open disk containing 0 such that $f(z)=g(z)^{2}$ on their common domain.

