Math 535: Complex Analysis - David Dumas - Spring 2016

Homework 8

Due Monday, March 7 at 4:00pm

(一) From the textbook: Section 4.4 .7 (p148): 2, 4, 5
Note: We will probably discuss part of problem 4 in lecture; you must still write a complete, correct solution that fills in any details omitted in that discussion.
(P1) A region $\Omega \subset \mathbb{C}$ is called star-shaped if there exists $z_{0} \in \Omega$ such that for all $z \in \Omega$ the closed line segment with endpoints z_{0}, z is contained in Ω. (The idea is that Ω looks like a "star" with rays emanating from z_{0}.)

Show that any star-shaped region is simply connected.
(P2) Suppose f is analytic in $\Delta^{*}=\{z: 0<|z|<1\}$.
(a) Give an example to show that, in general, such f need not be the derivative of an analytic function defined in a punctured neighborhood of 0 .
(b) Show that one can "correct" f by adding a multiple of $1 / z$ so that it becomes the derivative of an analytic function. That is, prove:

Lemma: There exists $a \in \mathbb{C}$ and analytic function F on Δ^{*} such that

$$
F^{\prime}(z)=f(z)-\frac{a}{z} .
$$

