## Math 535: Complex Analysis – Spring 2016 – David Dumas Final Exam

## **Instructions:**

- For full credit, you must solve **five** of the problems below.
- No books or notes are allowed at the exam.

1

• In your solutions you can use any theorems from the textbook or from the lectures, but in doing so you *must* make it clear what result is being used.

## **Problems:**

(1) Calculate: 
$$\int_0^\infty \frac{x^{\frac{1}{5}}}{x^2 + 1} dx$$

- (2) Does there exist an entire function f with the following properties?
  - f(1) = 0
  - f(2) = 0
  - $f(z) \in \mathbb{R}$  if and only if  $z \in \mathbb{R}$

Either give an example of such a function, or prove that no such function exists.

- (3) For  $n \in \mathbb{N}$  let  $\Lambda_n \subset \mathbb{C}$  denote the lattice generated by  $\omega_1 = 1$  and  $\omega_2 = ni$ . Let  $\wp_n$  denote the Weierstrass function of  $\Lambda_n$ . Identify the limit of the meromorphic functions  $\wp_n$  as  $n \to \infty$ , and the region on which the convergence is locally uniform.
- (4) Suppose *f* is a holomorphic function on |z| < 2 that is *even* (that is, f(-z) = f(z)). Show that there exists a holomorphic function *F* on the annulus 1 < |z| < 2 such that

$$F'(z) = \frac{f(z)}{z^2 - 1}.$$

(5) Completely describe the convergence of the power series

$$\sum_{n=1}^{\infty} \frac{z^{2n}}{2^n n^3}$$

for  $z \in \mathbb{C}$ . That is, determine the set of all z for which the series converges, and separately, identify the largest open set in which the convergence is locally uniform.

- (6) Find all linear fractional transformations *T* such that T(1) = 1, T(3) = 3, and T(T(z)) = z for all *z*.
- (7) Find all holomorphic functions on  $\mathbb{C}^*$  that satisfy:

$$|f(z)| < |z| + |\log |z||$$

(8) Determine whether or not each family of holomorphic functions on the unit disk is normal:

(a)  $\mathcal{F}_1 = \{ f : \Delta \to \mathbb{C} : f(z) \neq 0 \text{ for all } z \in \Delta \}$ (b)  $\mathcal{F}_2 = \{ f : \Delta \to \mathbb{C} : f(z) \notin [0, 1] \text{ for all } z \in \Delta \}$ 

(c)  $\mathcal{F}_3 = \{ f : \Delta \to \mathbb{C} : |f(z)| > 1 \text{ for all } z \in \Delta \}$