Math 535: Complex Analysis - Spring 2016 - David Dumas
 Final Exam

Instructions:

- For full credit, you must solve five of the problems below.
- No books or notes are allowed at the exam.
- In your solutions you can use any theorems from the textbook or from the lectures, but in doing so you must make it clear what result is being used.

Problems:

(1) Calculate: $\int_{0}^{\infty} \frac{x^{\frac{1}{5}}}{x^{2}+1} d x$
(2) Does there exist an entire function f with the following properties?

- $f(1)=0$
- $f(2)=0$
- $f(z) \in \mathbb{R}$ if and only if $z \in \mathbb{R}$

Either give an example of such a function, or prove that no such function exists.
(3) For $n \in \mathbb{N}$ let $\Lambda_{n} \subset \mathbb{C}$ denote the lattice generated by $\omega_{1}=1$ and $\omega_{2}=n i$. Let \wp_{n} denote the Weierstrass function of Λ_{n}. Identify the limit of the meromorphic functions \wp_{n} as $n \rightarrow \infty$, and the region on which the convergence is locally uniform.
(4) Suppose f is a holomorphic function on $|z|<2$ that is even (that is, $f(-z)=f(z))$. Show that there exists a holomorphic function F on the annulus $1<|z|<2$ such that

$$
F^{\prime}(z)=\frac{f(z)}{z^{2}-1}
$$

(5) Completely describe the convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{z^{2 n}}{2^{n} n^{3}}
$$

for $z \in \mathbb{C}$. That is, determine the set of all z for which the series converges, and separately, identify the largest open set in which the convergence is locally uniform.
(6) Find all linear fractional transformations T such that $T(1)=1, T(3)=3$, and $T(T(z))=z$ for all z.
(7) Find all holomorphic functions on \mathbb{C}^{*} that satisfy:

$$
|f(z)|<|z|+|\log | z| |
$$

(8) Determine whether or not each family of holomorphic functions on the unit disk is normal:
(a) $\mathcal{F}_{1}=\{f: \Delta \rightarrow \mathbb{C}: f(z) \neq 0$ for all $z \in \Delta\}$
(b) $\mathcal{F}_{2}=\{f: \Delta \rightarrow \mathbb{C}: f(z) \notin[0,1]$ for all $z \in \Delta\}$
(c) $\mathcal{F}_{3}=\{f: \Delta \rightarrow \mathbb{C}:|f(z)|>1$ for all $z \in \Delta\}$

