Math 535: Complex Analysis - Spring 2016 - David Dumas Final Exam Solutions

Note: The solutions given here are in many places more detailed than the minimum requirements for full credit.
(1) Calculate: $\int_{0}^{\infty} \frac{x^{\frac{1}{5}}}{x^{2}+1} d x$

Solution. Let $f(z)=\frac{z^{\frac{1}{5}}}{z^{2}+1}$ where $z^{\frac{1}{5}}$ is the holomorphic branch defined on $\mathbb{C} \backslash\{z \geqslant 0\}$.
Let $\gamma_{\varepsilon, R}$ denote the closed "keyhole contour" which is the concatenation of the following arcs:

- $\gamma_{1}=$ the oriented line segment from $\frac{1}{R} \exp (i \varepsilon)$ to $R \exp (i \varepsilon)$,
- $\gamma_{2}=$ the counterclockwise arc of $|z|=R$ from $R \exp (i \varepsilon)$ to $R \exp (i(2 \pi-\varepsilon))$,
- $\gamma_{3}=$ the oriented line segment from $R \exp (i(2 \pi-\varepsilon))$ to $\frac{1}{R} \exp (i(2 \pi-\varepsilon))$, and
- $\gamma_{4}=$ the clockwise arc of $|z|=\frac{1}{R}$ from $\frac{1}{R} \exp (i(2 \pi-\varepsilon))$ to $\frac{1}{R} \exp (i \varepsilon)$.

Define

$$
I=\lim _{R \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} \int_{\gamma_{\varepsilon, R}} f(z) d z
$$

We claim that $I=(1-\exp (2 \pi i / 5)) \int_{0}^{\infty} f(x) d x$. This is because the branch of $z^{\frac{1}{5}}$ we defined above extends continuously when approaching $x \in \mathbb{R}^{+}$from above or from below, with respective limits that are $x^{\frac{1}{5}}$ or $\exp (2 \pi i / 5) x^{\frac{1}{5}}$. Hence

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \int_{\gamma_{1}} f(z) d z=\int_{1 / R}^{R} f(x) d x \\
& \lim _{\varepsilon \rightarrow 0} \int_{\gamma_{3}} f(z) d z=\exp (2 \pi i / 5) \int_{R}^{1 / R} f(x) d x
\end{aligned}
$$

Adding these and taking $R \rightarrow \infty$ gives the claimed value for I, so it suffices to show that $\lim _{R \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} \int_{\gamma_{i}} f(z) d z=0$ for $i=2,4$. We use the standard method to get a bound these integrals based on the length of the contour and the size of the integrand.

Considering γ_{2} first, we have

$$
\int_{\gamma_{2}} f(z) d z \leqslant\left(\sup _{z \in \gamma_{2}}|f(z)|\right)\left(\text { length }\left(\gamma_{2}\right)\right)
$$

If $z \in \gamma_{2}$ then $|z|=R$ and for large R this implies $\left|z^{2}+1\right| \geqslant \frac{1}{2} R^{2}$. We therefore find $|f(z)| \leqslant 2 R^{\frac{1}{5}} / R^{2}=2 R^{-\frac{9}{5}}$. We also have length $\left(\gamma_{2}\right) \leqslant 2 \pi R$, giving $\int_{\gamma_{i}} f(z) d z \leqslant 4 \pi R^{-\frac{4}{5}}$ which goes to zero as $R \rightarrow \infty$.

Turning to γ_{4}, we have

$$
\int_{\gamma_{4}} f(z) d z \leqslant\left(\sup _{z \in \gamma_{4}}|f(z)|\right)\left(\text { length }\left(\gamma_{4}\right)\right)
$$

If $z \in \gamma_{4}$ then $|z|=\frac{1}{R}$ and for large R this implies $\left|z^{2}+1\right| \geqslant \frac{1}{2}$ and $|f(z)| \leqslant 2 R^{-\frac{1}{5}}$. Since length $\left(\gamma_{4}\right) \leqslant 2 \pi R^{-1}$, we find $\int_{\gamma_{i}} f(z) d z \leqslant 4 \pi R^{-\frac{6}{5}}$ which also goes to zero as $R \rightarrow \infty$.

Now we use the Residue Theorem to compute I. The simple poles of the integrand are at $\pm i$, points about which the contour has winding number one for all large R and small ε, and we find

$$
I=2 \pi i\left(\operatorname{Res}_{z=i} f(z)+\operatorname{Res}_{z=-i} f(z)\right)
$$

We compute

$$
\operatorname{Res}_{z=i} f(z)=\lim _{z \rightarrow i}(z-i) \frac{z^{\frac{1}{5}}}{\left.\left(z^{2}+1\right)\right)}=\frac{i^{\frac{1}{5}}}{2 i}=\frac{\exp (\pi i / 10)}{2 i}
$$

noting that i has argument $\pi / 2$ for the purposes of computing our chosen branch of $z^{\frac{1}{5}}$. Similarly,

$$
\operatorname{Res}_{z=-i} f(z)=\lim _{z \rightarrow-i}(z+i) \frac{z^{\frac{1}{5}}}{\left.\left(z^{2}+1\right)\right)}=-\frac{(-i)^{\frac{1}{5}}}{2 i}=-\frac{\exp (3 \pi i / 10)}{2 i}
$$

Using the above formula for I we have, finally

$$
\int_{0}^{\infty} \frac{x^{\frac{1}{5}}}{x^{2}+1} d x=\frac{2 \pi i\left(\frac{\exp (\pi i / 10)}{2 i}-\frac{\exp (3 \pi i / 10)}{2 i}\right)}{1-\exp (2 \pi i / 5)}
$$

Further simplification is not necessary on an exam, but with a bit of algebra this can be reduced to the tidy expression

$$
\int_{0}^{\infty} \frac{x^{\frac{1}{5}}}{x^{2}+1} d x=\pi \frac{\sin (\pi / 10)}{\sin (\pi / 5)}
$$

(2) Does there exist an entire function f with the following properties?

- $f(1)=0$
- $f(2)=0$
- $f(z) \in \mathbb{R}$ if and only if $z \in \mathbb{R}$

Either give an example of such a function, or prove that no such function exists.
Solution. No such function exists. In fact, we claim that any holomorphic function which has $f(1)=0, f(2)=0$, and which is real for all $z \in \mathbb{R}$ is also real at some point in $\mathbb{C} \backslash \mathbb{R}$. If f is identically zero this is immediate, so assume from now on that f is not identically zero.

Since f is real-valued and differentiable on [1,2], by Rolle's theorem there exists $c \in[1,2]$ such that $f^{\prime}(c)=0$. Let $g(z)=f(c+z)-f(c)$, so that $g(0)=g^{\prime}(0)=0$. Let $k \geqslant 2$ be the order of this zero of the function g. Then the local standard form for the holomorphic map g is

$$
g(z)=h(z)^{k}
$$

for some holomorphic function h with $h(0)=0$ and $h^{\prime}(0) \neq 0$. In particular h is conformal on some small open disk about 0 . The condition $g(z) \in \mathbb{R}$ is equivalent, for z near 0 , to $\arg h(z) \in \frac{\pi}{k} \mathbb{Z}$. Since the local inverse of h is a conformal map, we find that near $z=0$, the set $g^{-1}(\mathbb{R})$ consists $2 k$ smooth arcs emanating from 0 whose tangent vectors have
arguments differing by all integer multiples of π / k. At most two of these arcs are tangent to \mathbb{R}, and $k \geqslant 2$, so one of these arcs contains a non-real point z_{0} (which by construction has $g\left(z_{0}\right) \in \mathbb{R}$. Since c and $f(c)$ are both real, we conclude $f\left(c+z_{0}\right)=g\left(z_{0}\right)+f(c)$ is real while $c+z_{0}$ is not.

Remark. There are lots of different solutions to this problem. Another one is to consider the image by f of a large circle which encloses 1 and 2 . By the argument principle, the image has winding number 2 about the origin. However, the given conditions on f would imply that the image crosses \mathbb{R} at only two points (the images of the real points on the circle), which can be used to show that the winding number is zero or one, giving a contradiction.

It is also possible to attack the problem by considering the imaginary part of f, which is a harmonic function vanishing only on \mathbb{R}, and using the Cauchy-Riemann equations to infer from this that the real part of f cannot have multiple zeros on \mathbb{R}.
(3) For $n \in \mathbb{N}$ let $\Lambda_{n} \subset \mathbb{C}$ denote the lattice generated by $\omega_{1}=1$ and $\omega_{2}=n i$. Let \wp_{n} denote the Weierstrass function of Λ_{n}. Identify the limit of the meromorphic functions \wp_{n} as $n \rightarrow \infty$, and the region on which the convergence is locally uniform.
Solution. We will show that the limit is $\pi^{2} \csc ^{2}(\pi z)-\frac{\pi^{2}}{3}$, with locally uniform convergence in $\mathbb{C} \backslash \mathbb{Z}$. First recall that

$$
\pi^{2} \csc ^{2}(\pi z)=\sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^{2}}
$$

with locally uniform convergence on $\mathbb{C} \backslash \mathbb{Z}$. (It is equivalent to say: "With uniform convergence on every closed disk, once we omit the terms with poles in that disk".) Also recall that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Since $(-n)^{2}=n$, we can rewrite this as half of the corresponding sum over $\mathbb{Z} \backslash\{0\}$, using $(-n)^{2}=n$, obtaining

$$
\sum_{n \in(\mathbb{Z} \backslash\{0\})} \frac{1}{n^{2}}=\frac{\pi^{2}}{3} .
$$

Adding this to the series identity for the cosecant function and renaming n to ω, we find

$$
\pi^{2} \csc ^{2}(\pi z)-\frac{\pi^{2}}{3}=\frac{1}{z^{2}}+\sum_{\omega \in(\mathbb{Z}\{0\})}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right)
$$

Recalling the definition of the function \wp, we see that the sum above consists of the terms from \wp_{n} that lie on the real axis. To show that this is equal to the limit as $n \rightarrow \infty$ of the full sum, we need to show that the sequence of functions defined by the remaining terms, i.e.

$$
f_{n}(z)=\sum_{\omega \in\left(\Lambda_{n} \backslash \mathbb{R}\right)}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right)
$$

converges locally uniformly to zero as $n \rightarrow \infty$.

To show this, recall that the sum defining \wp_{n} itself converges in $|z| \leqslant R$ because, after omitting the finitely many terms with $|\omega| \leqslant 2 R$, we have

$$
\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}} \leqslant \frac{C|z|}{|\omega|^{3}}
$$

for a fixed constant C, hence the remaining terms of \wp_{n} have as majorant in $|z| \leqslant R$ the absolutely convergent series

$$
C R \sum_{\omega \in\left(\Lambda_{n} \backslash\{0\}\right)} \frac{1}{|\omega|^{3}}
$$

Applying the same reasoning to f_{n}, there is no need to omit any terms if n is large enough, since $\omega \in\left(\Lambda_{n} \backslash \mathbb{R}\right)$ implies $|\omega| \geqslant n$, so we have

$$
\left|f_{n}(z)\right| \leqslant C R \sum_{\omega \in\left(\Lambda_{n} \backslash \mathbb{R}\right)} \frac{1}{|\omega|^{3}}
$$

again on $|z| \leqslant R$. Thus our task is reduced to showing that

$$
\sum_{\omega \in\left(\Lambda_{n} \backslash \mathbb{R}\right)} \frac{1}{|\omega|^{3}}
$$

is small when n is large. Define $\Xi_{n}=\{(\ell+m i): \max (|\ell|,|m|) \geqslant n\}$, so that $\Lambda_{n} \subset \Xi_{n}$ and

$$
\sum_{\omega \in\left(\Lambda_{n} \backslash \mathbb{R}\right)} \frac{1}{|\omega|^{3}} \leqslant \sum_{\omega \in \Xi_{n}} \frac{1}{|\omega|^{3}}
$$

We will estimate the sum on the right, which is easily seen to converge, for example since $\Xi_{n} \subset \Lambda_{1}$ and the sum of $|\omega|^{-3}$ over any lattice converges.

Consider the terms in $\sum_{\omega \in \Xi_{n}} \frac{1}{|\omega|^{3}}$ with $\omega=(\ell+m i)$ and $\max (|\ell|,|m|)=k$. The set of such terms is nonempty for each $k \geqslant n$ in which case it has $8 k$ elements, each contributing at most k^{-3} to the sum. We find,

$$
\sum_{\omega \in \Xi_{n}} \frac{1}{|\omega|^{3}} \leqslant \sum_{k=n}^{\infty} 8 k \frac{1}{k^{3}}=8 \sum_{k=n}^{\infty} \frac{1}{k^{2}}
$$

which is the tail of a convergent series with the first $(n-1)$ terms omitted. Thus as $n \rightarrow \infty$ this remainder goes to zero, as required.
(4) Suppose f is a holomorphic function on $|z|<2$ that is even (that is, $f(-z)=f(z)$). Show that there exists a holomorphic function F on the annulus $1<|z|<2$ such that

$$
F^{\prime}(z)=\frac{f(z)}{z^{2}-1}
$$

Solution. Let $A=\{z: 1<|z|<2\}$ and let $g(z)=\frac{f(z)}{z^{2}-1}$. Such F exists if and only if the integral of g over every closed path in A is equal to zero. Any closed path in A is homologous to an integer multiple of the circle $C=\left\{|z|=\frac{3}{2}\right\}$, so we need only show that

$$
\int_{C} g(z) d z=0
$$

Since g is meromorphic in $|z|<2$, we can compute the integral above by residues:

$$
\int_{C} g(z) d z=2 \pi i\left(\operatorname{Res}_{z=1} g(z)+\operatorname{Res}_{z=-1} g(z)\right)
$$

Since $\frac{1}{z^{2}-1}$ has simple poles at $z= \pm 1$ with residues $\pm \frac{1}{2}$, the residues of g are

$$
\operatorname{Res}_{z=1} g(z)=f(1) \operatorname{Res}_{z=1} \frac{1}{z^{2}-1}=\frac{1}{2} f(1)
$$

and

$$
\operatorname{Res}_{z=-1} g(z)=f(-1) \operatorname{Res}_{z=-1} \frac{1}{z^{2}-1}=-\frac{1}{2} f(-1) .
$$

Since f is even, these residues sum to zero as required.
(5) Completely describe the convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{z^{2 n}}{2^{n} n^{3}}
$$

for $z \in \mathbb{C}$. That is, determine the set of all z for which the series converges, and separately, identify the largest open set in which the convergence is locally uniform.
Solution. This radius of convergence R of a power series satisfies

$$
R^{-1}=\limsup _{n \rightarrow \infty}\left|a_{k}\right|^{1 / k}
$$

where a_{k} is the coefficient of z^{k}. In this case $a_{k}=0$ for odd k and $a_{2 n}=2^{-n} n^{-} 3$. Thus

$$
R^{-1}=\limsup _{n \rightarrow \infty}\left(2^{-n} n^{-3}\right)^{\frac{1}{2 n}}
$$

Note that $\left(2^{-n}\right)^{\frac{1}{2 n}}=2^{-\frac{1}{2}}$, so it will follow that $R=\sqrt{2}$ if we show

$$
\lim _{n \rightarrow \infty} n^{\frac{3}{2 n}}=1
$$

Taking the logarithm gives

$$
\log \lim _{n \rightarrow \infty} n^{\frac{3}{2 n}}=\frac{3}{2} \lim _{n \rightarrow \infty} \frac{\log n}{n}=0
$$

as required.
We therefore conclude that the series in question converges locally uniformly in the open disk $|z|<\sqrt{2}$ and that it diverges if $|z|>\sqrt{2}$.

It remains only to consider what happens for $|z|=\sqrt{2}$. For such z the series becomes $\sum_{n} \frac{w^{n}}{n^{3}}$ where $w=\frac{1}{2} z^{2}$ has $|w|=1$. Thus at such points the series has the convergent series $\sum_{n} \frac{1}{n^{3}}$ as a majorant, and in particular converges.

To summarize, the series converges if and only if $|z| \leqslant \sqrt{2}$, and it converges locally uniformly in $|z|<\sqrt{2}$ (and not in any larger open set).
(6) Find all linear fractional transformations T such that $T(1)=1, T(3)=3$, and $T(T(z))=z$ for all z.

Solution. In this solution we use multiplicative notation for composition of linear fractional transformations, so e.g. ST refers to the composition $S \circ T$ if $S(z)$ and $T(z)$ are linear fractional. We also use I to denote the identity map, $I(z)=z$.

A linear fractional transformation which fixes 0 and ∞ in $\widehat{\mathbb{C}}$ has the form $F(z)=\lambda z$ for some $\lambda \in \mathbb{C}^{*}$. If such a transformation has $F F=z$ then $\lambda^{2}=1$ and there are two possibilities: $F=I$ or $F(z)=-z$.

Let $S(z)=\frac{z-1}{z-3}$. This linear fractional transformation satisfies $S(1)=0$ and $S(3)=\infty$, so if T is as described in the problem, then $S T S^{-1}$ is linear fractional, fixes 0 and ∞, and has $S T S^{-1} S T S^{-1}=S T T S^{-1}=S I S^{-1}=I$. Thus the possible transformations T are $S^{-1} F S$ where $F=I$ or $F(z)=-z$. The first is simply I, the latter is easily computed to be

$$
T(z)=\frac{2 z-3}{z-2}
$$

(7) Find all holomorphic functions on \mathbb{C}^{*} that satisfy:

$$
|f(z)|<|z|+|\log | z| |
$$

Solution. Let us call this inequality (*).
We will show that the functions satisfying (*) are exactly the linear functions $f(z)=a z+b$ where $|a|+|b|<1$.

First, we show that a function satisfying $\left(^{*}\right)$ has a removable singularity at the origin, and hence defines an entire function. Consider the function $z f(z)$. Then for $|z|=r<1$ we have $|z f(z)| \leqslant r^{2}+r \log \frac{1}{r}$ which goes to zero as $r \rightarrow 0$. Thus $z f(z)$ is bounded near zero, the singularity of $z f(z)$ is removable, and the extended function g vanishes at $z=0$. But then $f(z)=g(z) / z$ has a removable singularity at 0 , giving the desired extension of f.

Next, we show f is linear. An entire function with a pole of order k at infinity is a polynomial of degree k, so it suffices to show that f has at most a simple pole at infinity, or equivalently that $f(1 / z)$ has a simple pole at $z=0$. By $(*)$ we have

$$
f(1 / z)<\frac{1}{|z|}+\left|\log \frac{1}{|z|}\right|=\frac{1}{|z|}+|\log | z| |
$$

Arguing as above we find $|z f(1 / z)|$ is bounded near $z=0$, hence extends holomorphically, and $f(1 / z)$ is expressible as $\frac{1}{z} g(z)$ for g holomorphic near 0 . That is, $f(1 / z)$ has at most a simple pole at $z=0$.

Now we must determine which linear functions $a z+b$ satisfy (*). For $|z|=1$, inequality ${ }^{(*)}$ becomes $|f(z)|<1$. If either of a or b is zero, this shows the other has absolute value less than one. Otherwise, taking $z=\frac{b|a|}{a|b|} \in S^{1}$ we find $|f(z)|=|a|+|b|$ and so again $(*)$ gives $|a|+|b|<1$, and we conclude this condition is necessary.

Finally, we show $|a|+|b|<1$ is sufficient for $f(z)=a z+b$ to satisfy (*). Note that 1 is the absolute minimum value of $r+|\log r|$ on $(0, \infty)$. If $|z|=r \leqslant 1$ then

$$
|a z+b| \leqslant|a| r+|b| \leqslant|a|+|b|<1 \leqslant r+|\log r|
$$

and so $\left(^{*}\right)$ is satisfied for such z. On the other hand, if $r>1$ then

$$
|a z+b| \leqslant|a| r+|b| \leqslant(|a|+|b|) r<r<r+|\log r|
$$

and $\left({ }^{*}\right)$ is satisfied for these z as well.
(8) Determine whether or not each family of holomorphic functions on the unit disk is normal:
(a) $\mathcal{F}_{1}=\{f: \Delta \rightarrow \mathbb{C}: f(z) \neq 0$ for all $z \in \Delta\}$
(b) $\mathcal{F}_{2}=\{f: \Delta \rightarrow \mathbb{C}: f(z) \notin[0,1]$ for all $z \in \Delta\}$
(c) $\mathcal{F}_{3}=\{f: \Delta \rightarrow \mathbb{C}:|f(z)|>1$ for all $z \in \Delta\}$

Solution.

(a) \mathcal{F}_{1} is not normal.

Consider the sequence of functions $f_{n}=(z+1)^{n} \in \mathcal{F}_{1}$. Then $f_{n}(0)=1$ but for any $x \in(0,1)$ we have $f_{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$, so no subsequence of f_{n} can converge to a function continuous at zero, nor does any subsequence tend to infinity locally uniformly.
(b) \mathcal{F}_{2} is normal, and
(c) \mathcal{F}_{3} is normal.

In fact, since $\mathcal{F}_{3} \subset \mathcal{F}_{2}$, and a subfamily of a normal family is normal, it suffices to show that \mathcal{F}_{2} is normal.

Recall that $h(z)=z+\frac{1}{z}$ is a conformal map from the complement of the unit disk to the complement of $[-2,2]$. Thus $H(z)=\frac{1}{4} h(z)+1$ is a conformal map from the complement of the unit disk to the complement of $[0,1]$. Note that both H and its inverse have a simple pole at infinity.

If f_{n} is a sequence in \mathcal{F}_{2}, then $g_{n}(z)=\frac{1}{H^{-1}\left(f_{n}(z)\right)}$ is a sequence of holomorphic functions to Δ^{*}. As these are uniformly bounded, there exists a locally uniformly convergent subsequence $g_{n_{k}}$. By Hurwitz's theorem, the limit function g_{∞} is either nowhere zero or identically zero. In the former case we find that

$$
f_{n_{k}}(z)=H\left(\frac{1}{g_{n_{k}}(z)}\right)
$$

converges locally uniformly to $H\left(\frac{1}{g_{\infty}}\right)$. In the latter case, $f_{n_{k}}$ converges locally uniformly to infinity, since $\frac{1}{g_{n_{k}}} \rightarrow \infty$ and H has a pole at infinity. Thus \mathcal{F}_{2} is normal.

