
Math 535: Complex Analysis – Spring 2016 – David Dumas
Final Exam Solutions

Note: The solutions given here are in many places more detailed than the minimum requirements
for full credit.

(1) Calculate:
∫ ∞

0

x
1
5

x2 + 1
dx

Solution. Let f (z) = z
1
5

z2+1 where z
1
5 is the holomorphic branch defined on C \ {z > 0}.

Let γε,R denote the closed “keyhole contour” which is the concatenation of the following
arcs:
• γ1 = the oriented line segment from 1

R exp(iε) to R exp(iε),
• γ2 = the counterclockwise arc of |z | = R from R exp(iε) to R exp(i(2π − ε)),
• γ3 = the oriented line segment from R exp(i(2π − ε)) to 1

R exp(i(2π − ε)), and
• γ4 = the clockwise arc of |z | = 1

R from 1
R exp(i(2π − ε)) to 1

R exp(iε).
Define

I = lim
R→∞

lim
ε→0

∫
γε,R

f (z)dz.

We claim that I = (1 − exp(2πi/5))
∫ ∞

0
f (x)dx. This is because the branch of z

1
5 we

defined above extends continuously when approaching x ∈ R+ from above or from below,
with respective limits that are x

1
5 or exp(2πi/5)x

1
5 . Hence

lim
ε→0

∫
γ1

f (z)dz =
∫ R

1/R
f (x)dx

lim
ε→0

∫
γ3

f (z)dz = exp(2πi/5)
∫ 1/R

R
f (x)dx

Adding these and taking R → ∞ gives the claimed value for I, so it suffices to show that

lim
R→∞

lim
ε→0

∫
γi

f (z)dz = 0 for i = 2, 4. We use the standard method to get a bound these

integrals based on the length of the contour and the size of the integrand.
Considering γ2 first, we have∫

γ2

f (z)dz 6 (sup
z∈γ2

| f (z) |)(length(γ2)).

If z ∈ γ2 then |z | = R and for large R this implies |z2 + 1| > 1
2 R2. We therefore find

| f (z) | 6 2R
1
5 /R2 = 2R−

9
5 . We also have length(γ2) 6 2πR, giving

∫
γi

f (z)dz 6 4πR−
4
5

which goes to zero as R→ ∞.
Turning to γ4, we have∫

γ4

f (z)dz 6 (sup
z∈γ4

| f (z) |)(length(γ4))



If z ∈ γ4 then |z | = 1
R and for large R this implies |z2 + 1| > 1

2 and | f (z) | 6 2R−
1
5 . Since

length(γ4) 6 2πR−1, we find
∫
γi

f (z)dz 6 4πR−
6
5 which also goes to zero as R→ ∞.

Now we use the Residue Theorem to compute I. The simple poles of the integrand are
at ±i, points about which the contour has winding number one for all large R and small ε,
and we find

I = 2πi(Resz=i f (z) + Resz=−i f (z)).
We compute

Resz=i f (z) = lim
z→i

(z − i)
z

1
5

(z2 + 1))
=

i
1
5

2i
=

exp(πi/10)
2i

noting that i has argument π/2 for the purposes of computing our chosen branch of z
1
5 .

Similarly,

Resz=−i f (z) = lim
z→−i

(z + i)
z

1
5

(z2 + 1))
= −

(−i)
1
5

2i
= −

exp(3πi/10)
2i

Using the above formula for I we have, finally∫ ∞

0

x
1
5

x2 + 1
dx =

2πi
( exp(πi/10)

2i −
exp(3πi/10)

2i

)
1 − exp(2πi/5)

Further simplification is not necessary on an exam, but with a bit of algebra this can be
reduced to the tidy expression∫ ∞

0

x
1
5

x2 + 1
dx = π

sin(π/10)
sin(π/5)

.

(2) Does there exist an entire function f with the following properties?

• f (1) = 0
• f (2) = 0
• f (z) ∈ R if and only if z ∈ R

Either give an example of such a function, or prove that no such function exists.

Solution. No such function exists. In fact, we claim that any holomorphic function which
has f (1) = 0, f (2) = 0, and which is real for all z ∈ R is also real at some point in C \ R.
If f is identically zero this is immediate, so assume from now on that f is not identically
zero.

Since f is real-valued and differentiable on [1, 2], byRolle’s theorem there exists c ∈ [1, 2]
such that f ′(c) = 0. Let g(z) = f (c + z) − f (c), so that g(0) = g′(0) = 0. Let k > 2 be
the order of this zero of the function g. Then the local standard form for the holomorphic
map g is

g(z) = h(z)k

for some holomorphic function h with h(0) = 0 and h′(0) , 0. In particular h is conformal
on some small open disk about 0. The condition g(z) ∈ R is equivalent, for z near 0,
to arg h(z) ∈ π

kZ. Since the local inverse of h is a conformal map, we find that near
z = 0, the set g−1(R) consists 2k smooth arcs emanating from 0 whose tangent vectors have



arguments differing by all integer multiples of π/k. At most two of these arcs are tangent
to R, and k > 2, so one of these arcs contains a non-real point z0 (which by construction
has g(z0) ∈ R). Since c and f (c) are both real, we conclude f (c + z0) = g(z0) + f (c) is
real while c + z0 is not.

Remark. There are lots of different solutions to this problem. Another one is to consider
the image by f of a large circle which encloses 1 and 2. By the argument principle, the
image has winding number 2 about the origin. However, the given conditions on f would
imply that the image crossesR at only two points (the images of the real points on the circle),
which can be used to show that the winding number is zero or one, giving a contradiction.

It is also possible to attack the problem by considering the imaginary part of f , which
is a harmonic function vanishing only on R, and using the Cauchy-Riemann equations to
infer from this that the real part of f cannot have multiple zeros on R.

(3) For n ∈ N letΛn ⊂ C denote the lattice generated byω1 = 1 andω2 = ni. Let ℘n denote the
Weierstrass function of Λn. Identify the limit of the meromorphic functions ℘n as n → ∞,
and the region on which the convergence is locally uniform.

Solution. Wewill show that the limit is π2 csc2(πz)− π2

3 , with locally uniform convergence
in C \ Z. First recall that

π2 csc2(πz) =
∑
n∈Z

1
(z − n)2

with locally uniform convergence on C \ Z. (It is equivalent to say: “With uniform
convergence on every closed disk, once we omit the terms with poles in that disk”.) Also
recall that

∞∑
n=1

1
n2 =

π2

6
.

Since (−n)2 = n, we can rewrite this as half of the corresponding sum over Z \ {0}, using
(−n)2 = n, obtaining ∑

n∈(Z\{0})

1
n2 =

π2

3
.

Adding this to the series identity for the cosecant function and renaming n to ω, we find

π2 csc2(πz) −
π2

3
=

1
z2 +

∑
ω∈(Z\{0})

(
1

(z − ω)2 −
1
ω2

)
.

Recalling the definition of the function ℘, we see that the sum above consists of the terms
from ℘n that lie on the real axis. To show that this is equal to the limit as n → ∞ of the full
sum, we need to show that the sequence of functions defined by the remaining terms, i.e.

fn(z) =
∑

ω∈(Λn\R)

(
1

(z − ω)2 −
1
ω2

)
converges locally uniformly to zero as n → ∞.



To show this, recall that the sum defining ℘n itself converges in |z | 6 R because, after
omitting the finitely many terms with |ω | 6 2R, we have

1
(z − ω)2 −

1
ω2 6

C |z |
|ω |3

for a fixed constant C, hence the remaining terms of ℘n have as majorant in |z | 6 R the
absolutely convergent series

CR
∑

ω∈(Λn\{0})

1
|ω |3

Applying the same reasoning to fn, there is no need to omit any terms if n is large enough,
since ω ∈ (Λn \ R) implies |ω | > n, so we have

| fn(z) | 6 CR
∑

ω∈(Λn\R)

1
|ω |3

again on |z | 6 R. Thus our task is reduced to showing that∑
ω∈(Λn\R)

1
|ω |3

is small when n is large. Define Ξn = {(` + mi) : max(|` |, |m |) > n}, so that Λn ⊂ Ξn and∑
ω∈(Λn\R)

1
|ω |3

6
∑
ω∈Ξn

1
|ω |3

.

We will estimate the sum on the right, which is easily seen to converge, for example since
Ξn ⊂ Λ1 and the sum of |ω |−3 over any lattice converges.

Consider the terms in
∑
ω∈Ξn

1
|ω |3

with ω = (` + mi) and max(|` |, |m |) = k. The set of
such terms is nonempty for each k > n in which case it has 8k elements, each contributing
at most k−3 to the sum. We find,∑

ω∈Ξn

1
|ω |3

6
∞∑

k=n

8k
1
k3 = 8

∞∑
k=n

1
k2

which is the tail of a convergent series with the first (n − 1) terms omitted. Thus as n → ∞
this remainder goes to zero, as required.

(4) Suppose f is a holomorphic function on |z | < 2 that is even (that is, f (−z) = f (z)). Show
that there exists a holomorphic function F on the annulus 1 < |z | < 2 such that

F′(z) =
f (z)

z2 − 1
.

Solution. Let A = {z : 1 < |z | < 2} and let g(z) = f (z)
z2−1 . Such F exists if and only

if the integral of g over every closed path in A is equal to zero. Any closed path in A is
homologous to an integer multiple of the circle C = {|z | = 3

2 }, so we need only show that∫
C
g(z)dz = 0.



Since g is meromorphic in |z | < 2, we can compute the integral above by residues:∫
C
g(z)dz = 2πi(Resz=1g(z) + Resz=−1g(z)).

Since 1
z2−1 has simple poles at z = ±1 with residues ±1

2 , the residues of g are

Resz=1g(z) = f (1)Resz=1
1

z2 − 1
=

1
2

f (1)

and
Resz=−1g(z) = f (−1)Resz=−1

1
z2 − 1

= −
1
2

f (−1).

Since f is even, these residues sum to zero as required.

(5) Completely describe the convergence of the power series
∞∑

n=1

z2n

2nn3

for z ∈ C. That is, determine the set of all z for which the series converges, and separately,
identify the largest open set in which the convergence is locally uniform.

Solution. This radius of convergence R of a power series satisfies

R−1 = lim sup
n→∞

|ak |
1/k

where ak is the coefficient of zk . In this case ak = 0 for odd k and a2n = 2−nn−3. Thus

R−1 = lim sup
n→∞

(2−nn−3)
1

2n .

Note that (2−n)
1

2n = 2−
1
2 , so it will follow that R =

√
2 if we show

lim
n→∞

n
3

2n = 1.

Taking the logarithm gives

log lim
n→∞

n
3

2n =
3
2

lim
n→∞

log n
n
= 0

as required.
We therefore conclude that the series in question converges locally uniformly in the open

disk |z | <
√

2 and that it diverges if |z | >
√

2.
It remains only to consider what happens for |z | =

√
2. For such z the series becomes∑

n
wn

n3 where w = 1
2 z2 has |w | = 1. Thus at such points the series has the convergent series∑

n
1
n3 as a majorant, and in particular converges.

To summarize, the series converges if and only if |z | 6
√

2, and it converges locally
uniformly in |z | <

√
2 (and not in any larger open set).

(6) Find all linear fractional transformations T such that T (1) = 1, T (3) = 3, and T (T (z)) = z
for all z.



Solution. In this solution we use multiplicative notation for composition of linear
fractional transformations, so e.g. ST refers to the composition S ◦ T if S(z) and T (z) are
linear fractional. We also use I to denote the identity map, I (z) = z.
A linear fractional transformation which fixes 0 and ∞ in Ĉ has the form F (z) = λz

for some λ ∈ C∗. If such a transformation has FF = z then λ2 = 1 and there are two
possibilities: F = I or F (z) = −z.

Let S(z) = z−1
z−3 . This linear fractional transformation satisfies S(1) = 0 and S(3) = ∞,

so if T is as described in the problem, then ST S−1 is linear fractional, fixes 0 and ∞, and
has ST S−1ST S−1 = STT S−1 = SIS−1 = I. Thus the possible transformations T are S−1FS
where F = I or F (z) = −z. The first is simply I, the latter is easily computed to be

T (z) =
2z − 3
z − 2

.

(7) Find all holomorphic functions on C∗ that satisfy:

| f (z) | < |z | + �� log |z |��

Solution. Let us call this inequality (*).
Wewill show that the functions satisfying (*) are exactly the linear functions f (z) = az+b

where |a | + |b| < 1.
First, we show that a function satisfying (*) has a removable singularity at the origin,

and hence defines an entire function. Consider the function z f (z). Then for |z | = r < 1
we have |z f (z) | 6 r2 + r log 1

r which goes to zero as r → 0. Thus z f (z) is bounded near
zero, the singularity of z f (z) is removable, and the extended function g vanishes at z = 0.
But then f (z) = g(z)/z has a removable singularity at 0, giving the desired extension of f .

Next, we show f is linear. An entire function with a pole of order k at infinity is a
polynomial of degree k, so it suffices to show that f has at most a simple pole at infinity, or
equivalently that f (1/z) has a simple pole at z = 0. By (*) we have

f (1/z) <
1
|z |
+ �� log

1
|z |

�� =
1
|z |
+ �� log |z |��

Arguing as above we find |z f (1/z) | is bounded near z = 0, hence extends holomorphically,
and f (1/z) is expressible as 1

zg(z) for g holomorphic near 0. That is, f (1/z) has at most a
simple pole at z = 0.
Now we must determine which linear functions az + b satisfy (*). For |z | = 1, inequality

(*) becomes | f (z) | < 1. If either of a or b is zero, this shows the other has absolute value
less than one. Otherwise, taking z = b|a |

a |b| ∈ S1 we find | f (z) | = |a | + |b| and so again (*)
gives |a | + |b| < 1, and we conclude this condition is necessary.
Finally, we show |a | + |b| < 1 is sufficient for f (z) = az + b to satisfy (*). Note that 1 is

the absolute minimum value of r + | log r | on (0,∞). If |z | = r 6 1 then

|az + b| 6 |a |r + |b| 6 |a | + |b| < 1 6 r + | log r |

and so (*) is satisfied for such z. On the other hand, if r > 1 then

|az + b| 6 |a |r + |b| 6 (|a | + |b|)r < r < r + | log r |

and (*) is satisfied for these z as well.



(8) Determine whether or not each family of holomorphic functions on the unit disk is normal:
(a) F1 = { f : ∆→ C : f (z) , 0 for all z ∈ ∆}
(b) F2 = { f : ∆→ C : f (z) < [0, 1] for all z ∈ ∆}
(c) F3 = { f : ∆→ C : | f (z) | > 1 for all z ∈ ∆}

Solution.
(a) F1 is not normal.
Consider the sequence of functions fn = (z + 1)n ∈ F1. Then fn(0) = 1 but for any

x ∈ (0, 1) we have fn(x) → ∞ as n → ∞, so no subsequence of fn can converge to a
function continuous at zero, nor does any subsequence tend to infinity locally uniformly.

(b) F2 is normal, and
(c) F3 is normal.
In fact, since F3 ⊂ F2, and a subfamily of a normal family is normal, it suffices to show

that F2 is normal.
Recall that h(z) = z + 1

z is a conformal map from the complement of the unit disk to the
complement of [−2, 2]. Thus H (z) = 1

4 h(z) + 1 is a conformal map from the complement
of the unit disk to the complement of [0, 1]. Note that both H and its inverse have a simple
pole at infinity.

If fn is a sequence inF2, then gn(z) = 1
H−1( fn (z)) is a sequence of holomorphic functions to

∆∗. As these are uniformly bounded, there exists a locally uniformly convergent subsequence
gnk . By Hurwitz’s theorem, the limit function g∞ is either nowhere zero or identically zero.
In the former case we find that

fnk (z) = H (
1

gnk (z)
)

converges locally uniformly to H ( 1
g∞

). In the latter case, fnk converges locally uniformly
to infinity, since 1

gnk
→ ∞ and H has a pole at infinity. Thus F2 is normal.


