Math 535: Complex Analysis — Spring 2016 — David Dumas
Final Exam Solutions

Note: The solutions given here are in many places more detailed than the minimum requirements
for full credit.
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Solution. Let f(z) = Zi% where z% is the holomorphic branch defined on C \ {z > 0}.

Let y. r denote the closed “keyhole contour” which is the concatenation of the following
arcs:

e y; = the oriented line segment from + z €xp(ie) to Rexp(ie),

e ¥, = the counterclockwise arc of |z| = R from R exp(ie) to Rexp(i(2m — €)),

e y3 = the oriented line segment from R exp(i Qr—¢g))to ¢ exp(i (2r —¢)), and

e v, = the clockwise arc of |z| = 1 from + z exp(i(2r —¢&)) to % exp(zs)
Define

I = lim lim f f(2)dz.

R—o0 £—0

We claim that I = (1 — exp(27ri/5))f f(x)dx. This is because the branch of z§ we
0

defined above extends continuously when approaching x € R* from above or from below,
with respective limits that are X5 or exp(2mi/ S)X%. Hence

R
hng) f(2)dz = f(x)dx

Y1
1/R

hmf f(z)dz—exp(Qm/S)f f(x)dx
Y3

Adding these and taking R — oo gives the claimed value for /, so it suffices to show that

I%im lir% f f(z)dz = 0 for i = 2,4. We use the standard method to get a bound these
—00 £ .

integrals based on the length of the contour and the size of the integrand.
Considering vy, first, we have

f(2)dz < (sup | f(z)])(length(y2)).

Y2 Z€Y2
If z € ¥, then |z| = R and for large R this implies |22 + 1] > %Rz. We therefore find

|£(2)] < 2R3/R% = 2R™3. We also have length(y,) < 27R, giving | f(z)dz < 4nR™S

Yi
which goes to zero as R — 0.

Turning to y4, we have

ff(z)dz (sup | f(z)])(length(y4))
Y4

€74



If z € ygthen |z| = & and for large R this implies 122+ 1] > Z 3 L and | f(2)] < 2R 5. Since
length(ys) < 27R™ I we find f f(2)dz < 4nR™ s which also goes to zero as R — co.

Now we use the Residue Theorem to compute /. The simple poles of the integrand are
at +i, points about which the contour has winding number one for all large R and small &,
and we find

I =2ni(Res;-; f(z) + Res.—_; f(2)).
We compute
1

3 E _exp(mi/10)
(2+1) 2 2i

U\I»—‘

Res.=; f(z) = hm(z —)—

noting that i has argument 7/2 for the purposes of computing our chosen branch of Z5.
Similarly,

LI\I»—

(—i)s _ exp(3xi/10)
(2 + 1)) 2i 2i
Using the above formula for I we have, finally

Res,-_; f(2) = hm (z +1)

o 1 . (exp(mi/10) exp(37i/10)
f X3 2ni ( % )
0o x2+1 1 — exp(2ri/5)

Further simplification is not necessary on an exam, but with a bit of algebra this can be
reduced to the tidy expression

f“’ X3 1y SN/ 10)
0o x2+1 sin(r/3)

(2) Does there exist an entire function f with the following properties?

o f(1) =
e f(2)=
e f(z) eRifandonlyifz € R

Either give an example of such a function, or prove that no such function exists.

Solution. No such function exists. In fact, we claim that any holomorphic function which
has f(1) =0, f(2) = 0, and which is real for all z € R is also real at some point in C \ R.
If f is identically zero this is immediate, so assume from now on that f is not identically
zero.

Since f is real-valued and differentiable on [1, 2], by Rolle’s theorem there exists ¢ € [1, 2]
such that f"(¢) = 0. Let g(z) = f(c +z) — f(c), so that g(0) = g’(0) = 0. Let k > 2 be
the order of this zero of the function g. Then the local standard form for the holomorphic
map g is

g(2) = h(2)"
for some holomorphic function ~ with 2(0) = 0 and 4’(0) # 0. In particular 4 is conformal
on some small open disk about 0. The condition g(z) € R is equivalent, for z near O,
to argh(z) € %Z. Since the local inverse of 4 is a conformal map, we find that near
z = 0, the set g~ (R) consists 2k smooth arcs emanating from 0 whose tangent vectors have



arguments differing by all integer multiples of 7/k. At most two of these arcs are tangent
to R, and k > 2, so one of these arcs contains a non-real point zo (which by construction
has g(zg) € R). Since c and f(c) are both real, we conclude f(c + z9) = g(z0) + f(c) is
real while ¢ + zg is not.

Remark. There are lots of different solutions to this problem. Another one is to consider
the image by f of a large circle which encloses 1 and 2. By the argument principle, the
image has winding number 2 about the origin. However, the given conditions on f would
imply that the image crosses R at only two points (the images of the real points on the circle),
which can be used to show that the winding number is zero or one, giving a contradiction.

It is also possible to attack the problem by considering the imaginary part of f, which
is a harmonic function vanishing only on R, and using the Cauchy-Riemann equations to
infer from this that the real part of f cannot have multiple zeros on R.

(3) Forn € Nlet A, c Cdenote the lattice generated by w; = 1 and w, = ni. Let ¢, denote the
Weierstrass function of A,,. Identify the limit of the meromorphic functions g, as n — oo,
and the region on which the convergence is locally uniform.

Solution. We will show that the limit is 72 csc?(z) — %2, with locally uniform convergence
in C \ Z. First recall that

1
n? CSCz(ﬂ'Z) = Z

_ 2
nez (Z n)

with locally uniform convergence on C \ Z. (It is equivalent to say: “With uniform
convergence on every closed disk, once we omit the terms with poles in that disk”.) Also

recall that
i
2 —_ .
—~in 6

Since (—-n)? = n, we can rewrite this as half of the corresponding sum over Z \ {0}, using

(-n)? =n, obtaining
IR TS
2 - T .
wemion ™3
Adding this to the series identity for the cosecant function and renaming n to w, we find

2

. 21 3 1 1

7TCSC(7TZ)——:—2+ (—2——2)
3z weETion (z-w)? w

Recalling the definition of the function ¢, we see that the sum above consists of the terms
from g, that lie on the real axis. To show that this is equal to the limit as n — oo of the full
sum, we need to show that the sequence of functions defined by the remaining terms, i.e.

1 1
fn(2) = (— - —)
we(%‘\R) z-w?

converges locally uniformly to zero as n — co.
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To show this, recall that the sum defining ¢, itself converges in |z] < R because, after
omitting the finitely many terms with |w| < 2R, we have

1 1 Clz|
- o g -
(z-w)? ol
for a fixed constant C, hence the remaining terms of @, have as majorant in |z| < R the
absolutely convergent series

1
CR —
we(g{on o’
Applying the same reasoning to f;,, there is no need to omit any terms if » is large enough,
since w € (A, \ R) implies |w| > n, so we have

1
lwP

2Dl <CR )

we(An\R)
again on |z| < R. Thus our task is reduced to showing that
Z 1
3
wetanr ]
is small when 7 is large. Define Z, = {(€ + mi) : max(|{|, |m|) > n}, so that A, C E, and
1 1

— < N

2 P Z w3
wWEE,

We will estimate the sum on the right, which is easily seen to converge, for example since
Z, C A; and the sum of |w|™> over any lattice converges.

Consider the terms in ez, # with w = (£ + mi) and max(|€|, |m|) = k. The set of
such terms is nonempty for each k > n in which case it has 8k elements, each contributing
at most k=3 to the sum. We find,

which is the tail of a convergent series with the first (n — 1) terms omitted. Thus as n — oo
this remainder goes to zero, as required.

Suppose f is a holomorphic function on |z| < 2 that is even (that is, f(—z) = f(z)). Show
that there exists a holomorphic function F on the annulus 1 < |z| < 2 such that

) f(2)
F'(z) = .
@)=37
Solution. Let A ={z : 1 < |z] < 2} and let g(z) = 52(_21 Such F exists if and only

if the integral of g over every closed path in A is equal to zero. Any closed path in A is

homologous to an integer multiple of the circle C = {|z| = %}, so we need only show that

fg(z)dz =0.
c



Since g is meromorphic in |z| < 2, we can compute the integral above by residues:

fg(z)dz = 2mi(Res;-1g(z) + Res,-_1g(2)).
C

Since 221—_1 has simple poles at z = £1 with residues J_r%, the residues of g are

1 1
Res;-18(2) = f(l)ReSFlZz—_l =5/

and . .
Res;-_18(z) = f(—l)Resz=—1Z2 1= _Ef(_l)'

Since f is even, these residues sum to zero as required.

(5) Completely describe the convergence of the power series

o 2n

23

n=1

for z € C. That is, determine the set of all z for which the series converges, and separately,
identify the largest open set in which the convergence is locally uniform.

Solution. This radius of convergence R of a power series satisfies

R =1lim sup lag |k

n—oo

where ay, is the coefficient of zX. In this case a; = 0 for odd k and as, = 27"n~3. Thus

-1 _ 1. P T B
R~ =limsup(2™"n"7)2".

n—oo

Note that (2_”)ﬁ = 2_%, so it will follow that R = V2 if we show

3
lim n2r = 1.

n—oo

Taking the logarithm gives

) 3 3
log lim n2» = 5
n—oo n—oo n

as required.
We therefore conclude that the series in question converges locally uniformly in the open

disk |z| < V2 and that it diverges if |z| > V2.
It remains only to consider what happens for |z| = V2. For such z the series becomes
> V:l—3 where w = %zz has |w| = 1. Thus at such points the series has the convergent series

>n % as a majorant, and in particular converges.

To summarize, the series converges if and only if |z| < V2, and it converges locally
uniformly in |z| < V2 (and not in any larger open set).

(6) Find all linear fractional transformations 7" such that 7(1) = 1,7(3) =3, and T(T(2)) = z
for all z.



Solution. In this solution we use multiplicative notation for composition of linear
fractional transformations, so e.g. ST refers to the composition S o T if S(z) and T'(z) are
linear fractional. We also use / to denote the identity map, /(z) = z.

A linear fractional transformation which fixes 0 and o in C has the form F (z) = Az
for some 1 € C*. If such a transformation has FF = z then 1> = | and there are two
possibilities: F =1 or F(z) = —z.

Let S(z) = i:—; This linear fractional transformation satisfies S(1) = 0 and S(3) = oo,
so if T is as described in the problem, then STS™! is linear fractional, fixes 0 and co, and
has STS™!'STS~! = STTS~! = SIS~! = I. Thus the possible transformations T are S~'F S
where F = [ or F(z) = —z. The first is simply /, the latter is easily computed to be

2z-3
-2

T(z) =

(7) Find all holomorphic functions on C* that satisfy:
|f(2)] < lz] +|log zl|

Solution. Let us call this inequality (*).

We will show that the functions satisfying (*) are exactly the linear functions f(z) = az+b
where |a| + |b| < 1.

First, we show that a function satisfying (*) has a removable singularity at the origin,
and hence defines an entire function. Consider the function zf(z). Then for |z] = r < 1
we have |zf(2)] < r+r log% which goes to zero as r — 0. Thus zf(z) is bounded near
zero, the singularity of z f(z) is removable, and the extended function g vanishes at z = 0.
But then f(z) = g(z)/z has a removable singularity at 0, giving the desired extension of f.

Next, we show f is linear. An entire function with a pole of order k at infinity is a
polynomial of degree k, so it suffices to show that f has at most a simple pole at infinity, or
equivalently that f(1/z) has a simple pole at z = 0. By (*) we have

1 1 1
f(1/z) < — +|log —| = — +|log|z]|
|z lz|” |z

Arguing as above we find |z f(1/z)| is bounded near z = 0, hence extends holomorphically,
and f(1/z) is expressible as %g(z) for g holomorphic near 0. That is, f(1/z) has at most a
simple pole at z = 0.

Now we must determine which linear functions az + b satisfy (*). For |z| = 1, inequality
(*) becomes | f(z)| < 1. If either of a or b is zero, this shows the other has absolute value
less than one. Otherwise, taking z = % e S' we find | f(z)| = |a|] + |b| and so again (*)
gives |a| + |b| < 1, and we conclude this condition is necessary.

Finally, we show |a| + |b| < 1 is sufficient for f(z) = az + b to satisfy (*). Note that 1 is
the absolute minimum value of r + |logr| on (0, o). If |z] = r < 1 then

laz +b| < lalr +|b| < |a|+1b] <1< r+|logr|
and so (*) is satisfied for such z. On the other hand, if » > 1 then
laz + b| < |alr +|b| < (la| + |b))r <r <r+|logr|

and (*) is satisfied for these z as well.



(8) Determine whether or not each family of holomorphic functions on the unit disk is normal:
@ F1={f:A>C : f(z) #0forall z € A}
b) Fo={f:A>C: f(z)¢]0,1]forall z € A}
(c) Fs={f:A—>C : |f(2)] >1forall z €A}

Solution.
(a) ¥ is not normal.

Consider the sequence of functions f,, = (z + 1) € F,. Then f,(0) = 1 but for any
x € (0,1) we have f,(x) — o0 as n — oo, so no subsequence of f, can converge to a
function continuous at zero, nor does any subsequence tend to infinity locally uniformly.

(b) ¥, is normal, and
(c) F3 is normal.

In fact, since 3 C 3>, and a subfamily of a normal family is normal, it suffices to show
that 55 is normal.

Recall that h(z) = z + % is a conformal map from the complement of the unit disk to the
complement of [-2,2]. Thus H(z) = %h(z) + 1 is a conformal map from the complement
of the unit disk to the complement of [0, 1]. Note that both H and its inverse have a simple
pole at infinity.

If f, isasequencein I, then g,,(z) = m
A*. Asthese are uniformly bounded, there exists a locally uniformly convergent subsequence
8n, - By Hurwitz’s theorem, the limit function g is either nowhere zero or identically zero.
In the former case we find that

S (2) = H(

is a sequence of holomorphic functions to

8ny (Z))

converges locally uniformly to H (glm). In the latter case, f,, converges locally uniformly
1

to infinity, since 7 @ and H has a pole at infinity. Thus J, is normal.
3



